2D formulation for Electrostatic Problems
From KratosWiki
(Difference between revisions)
(→Source Vector f<sup>(e)</sup>) |
(→Source Vector f<sup>(e)</sup>) |
||
Line 413: | Line 413: | ||
::::<math> | ::::<math> | ||
\int_{\Omega^{(e)}} \mathbf{N^T} \rho_S \partial \Omega^{(e)} | \int_{\Omega^{(e)}} \mathbf{N^T} \rho_S \partial \Omega^{(e)} | ||
− | = 2 A^{(e)} | + | = 2 A^{(e)} \left ( \left [ \frac{1}{2} \quad \frac{1}{2} \quad 0 \right ]^T |
+ \left [ 0 \quad \frac{1}{2} \quad \frac{1}{2} \right ]^T | + \left [ 0 \quad \frac{1}{2} \quad \frac{1}{2} \right ]^T | ||
− | + \left [ \frac{1}{2} \quad 0 \quad \frac{1}{2} \right ]^T | + | + \left [ \frac{1}{2} \quad 0 \quad \frac{1}{2} \right ]^T \right ) |
\frac{1}{6} \rho_S | \frac{1}{6} \rho_S | ||
= A^{(e)} \frac{\rho_S}{3} \left [ 1 \quad 1 \quad 1 \right ]^T | = A^{(e)} \frac{\rho_S}{3} \left [ 1 \quad 1 \quad 1 \right ]^T |
Latest revision as of 10:47, 27 November 2009
The 2D Electrostatic Poisson's equation given by the governing PDE and its boundary conditions:
can be written as (see the General formulation for Electrostatic Problems):
with (n is the number of nodes of the element):
2D formulation for Triangular Elements
After applying the numerical integration for triangular elements by using the natural coordinates, we obtain:
Stiffness Matrix K(e)
Source Vector f(e)
- Linear case (np=1 integration point):
- Quadratic case (np=3 integration points):