2D formulation for Electrostatic Problems
From KratosWiki
(Difference between revisions)
(→2D formulation for Triangular Elements) |
(→Stiffness Matrix K<sup>(e)</sup>) |
||
Line 96: | Line 96: | ||
::<math> | ::<math> | ||
\int_{\Omega^{(e)}} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} \partial \Omega^{(e)}= | \int_{\Omega^{(e)}} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} \partial \Omega^{(e)}= | ||
− | \int \int_{A^{(e)}} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} | + | \int \int_{A^{(e)}} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} d x d y = |
− | \int_0^1 \int_0^{1-\beta} |J^{(e)}| \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} | + | \int_0^1 \int_0^{1-\beta} |J^{(e)}| \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} d \alpha d \beta |
</math> | </math> | ||
::<math>\oint_{\Gamma_{\infty}^{(e)}} \mathbf{N^T} \alpha \mathbf{N} \partial \Gamma_{\infty}^{(e)}</math> | ::<math>\oint_{\Gamma_{\infty}^{(e)}} \mathbf{N^T} \alpha \mathbf{N} \partial \Gamma_{\infty}^{(e)}</math> | ||
− | |||
=== Source Vector f<sup>(e)</sup> === | === Source Vector f<sup>(e)</sup> === |
Revision as of 19:12, 11 November 2009
The 2D Electrostatic Poisson's equation given by the governing PDE and its boundary conditions:
can be written as (see the General formulation for Electrostatic Problems):
with (n is the number of nodes of the element):