2D formulation for Electrostatic Problems
From KratosWiki
(Difference between revisions)
(→Stiffness Matrix K<sup>(e)</sup>) |
(→Stiffness Matrix K<sup>(e)</sup>) |
||
Line 95: | Line 95: | ||
::<math> | ::<math> | ||
− | \int_{\Omega^{(e)}} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} \partial \Omega^{(e)}= | + | \int_{\Omega^{(e)}} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} \partial \Omega^{(e)}= |
− | \int \int_{A^{(e)}} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} d x d y = | + | \int \int_{A^{(e)}} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} d x d y = |
− | \int_0^1 \int_0^{1-\beta} |J^{(e)}| \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} d \alpha d \beta | + | \int_0^1 \int_0^{1-\beta} |J^{(e)}| \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} d \alpha d \beta = |
+ | |J^{(e)}| \sum_{p=1}^{n_p} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} W_p | ||
</math> | </math> | ||
Revision as of 19:14, 11 November 2009
The 2D Electrostatic Poisson's equation given by the governing PDE and its boundary conditions:
can be written as (see the General formulation for Electrostatic Problems):
with (n is the number of nodes of the element):