# 2D formulation for Electrostatic Problems

(Difference between revisions)
 Revision as of 19:14, 11 November 2009 (view source)JMora (Talk | contribs) (→Stiffness Matrix K(e))← Older edit Revision as of 19:19, 11 November 2009 (view source)JMora (Talk | contribs) Newer edit → Line 88: Line 88: ::$\alpha = \frac{1}{|r-r_0|^{exp}} \qquad with \quad exp=0.5, 1, 2...$ ::$\alpha = \frac{1}{|r-r_0|^{exp}} \qquad with \quad exp=0.5, 1, 2...$ + + + + + == 2D formulation for Triangular Elements == == 2D formulation for Triangular Elements == + + + ::$+ \mathbf{N^{(e)}} = + \begin{bmatrix} + N_1 \\ + \, \\ + N_2 \\ + \, \\ + N_3 + \end{bmatrix} + = + \begin{bmatrix} + L_1 \\ + \, \\ + L_2 \\ + \, \\ + L_3 + \end{bmatrix} + = + \begin{bmatrix} + 1-\alpha-\beta \\ + \, \\ + \alpha \\ + \, \\ + \beta + \end{bmatrix} + + \qquad + \mathbf{a^{(e)}} = + \begin{bmatrix} + a_1 \\ + \, \\ + a_2 \\ + \, \\ + a_3 + \end{bmatrix} + \qquad + \mathbf{B}= + \begin{bmatrix} + \frac{\partial N_1}{\partial x} & \frac{\partial N_2}{\partial x} & \frac{\partial N_3}{\partial x}\\ + \, \\ + \frac{\partial N_1}{\partial y} & \frac{\partial N_2}{\partial y} & \frac{\partial N_3}{\partial y} + \end{bmatrix} +$ + + + + === Stiffness Matrix K(e) === === Stiffness Matrix K(e) ===

## Revision as of 19:19, 11 November 2009

The 2D Electrostatic Poisson's equation given by the governing PDE and its boundary conditions:

$A(V) = \left[ \frac{\partial}{\partial x}\cdot \left( \varepsilon_{x} \cdot \frac{\partial}{\partial x}\right) + \frac{\partial}{\partial y}\cdot \left(\varepsilon_{y} \cdot \frac{\partial}{\partial y} \right) \right]V(x,y) + \rho_S = 0 ~~ in ~ \Omega$

$B(V) = \begin{cases} \left . V - \bar V = 0 \right |_{\Gamma_{V}} & in ~ \Gamma_{\varphi} \\ \, \\ \left . \hat n \vec{D} - \bar D_n = 0 \right |_{\Gamma_{q}} & in ~ \Gamma_{q} \\ \, \\ \left . \frac{\partial V}{\partial r} \right |_{\Gamma_{\infty}} \approx - \frac{V}{r^{exp}} & in ~ \Gamma_{\infty} \end{cases}$

can be written as (see the General formulation for Electrostatic Problems):

${ \int_{\Omega} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} \mathbf{a} \partial \Omega + \oint_{\Gamma_{\infty}} \mathbf{N^T} \alpha \mathbf{N} \mathbf{a} \partial \Gamma_{\infty} = \int_{\Omega} \mathbf{N^T} \rho_S \partial \Omega - \oint_{\Gamma_q} \mathbf{N^T} \bar D_n \partial \Gamma_q - \oint_{\Gamma_V} \mathbf{n^T} \mathbf{N^T} \mathbf{q_n} \partial \Gamma_V }$

$\mathbf{K} \mathbf{a} \,= \mathbf{f}$

$\mathbf{K}^{(e)}= \int_{\Omega^{(e)}} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} \partial \Omega^{(e)} + \oint_{\Gamma_{\infty}^{(e)}} \mathbf{N^T} \alpha \mathbf{N} \partial \Gamma_{\infty}^{(e)}$
$\mathbf{f}^{(e)}= \int_{\Omega^{(e)}} \mathbf{N^T} \rho_S \partial \Omega^{(e)} - \oint_{\Gamma_q^{(e)}} \mathbf{N^T} \bar D_n \partial \Gamma_q^{(e)} - \oint_{\Gamma_V^{(e)}} \mathbf{n^T} \mathbf{N^T} \mathbf{q_n} \partial \Gamma_V^{(e)}$

with (n is the number of nodes of the element):

$V (x,y) \cong \hat V (x,y) = \sum_{i=0}^n N_i (x,y) a_i = \mathbf{N}^{(e)} · \mathbf{a}^{(e)}$

$\mathbf{N^{(e)}} = \begin{bmatrix} N_1 \\ \, \\ N_2 \\ \, \\ \vdots \\ \, \\ N_n \end{bmatrix} \qquad \mathbf{a^{(e)}} = \begin{bmatrix} a_1 \\ \, \\ a_2 \\ \, \\ \vdots \\ \, \\ a_n \end{bmatrix} \qquad \mathbf{B}= \left [ \mathbf{B_1 B_2 ... B_n} \right ] \qquad \mathbf{B_i}= \begin{bmatrix} \frac{\partial N_i}{\partial x} \\ \, \\ \frac{\partial N_i}{\partial y} \end{bmatrix}$

$\alpha = \frac{1}{|r-r_0|^{exp}} \qquad with \quad exp=0.5, 1, 2...$

## 2D formulation for Triangular Elements

$\mathbf{N^{(e)}} = \begin{bmatrix} N_1 \\ \, \\ N_2 \\ \, \\ N_3 \end{bmatrix} = \begin{bmatrix} L_1 \\ \, \\ L_2 \\ \, \\ L_3 \end{bmatrix} = \begin{bmatrix} 1-\alpha-\beta \\ \, \\ \alpha \\ \, \\ \beta \end{bmatrix} \qquad \mathbf{a^{(e)}} = \begin{bmatrix} a_1 \\ \, \\ a_2 \\ \, \\ a_3 \end{bmatrix} \qquad \mathbf{B}= \begin{bmatrix} \frac{\partial N_1}{\partial x} & \frac{\partial N_2}{\partial x} & \frac{\partial N_3}{\partial x}\\ \, \\ \frac{\partial N_1}{\partial y} & \frac{\partial N_2}{\partial y} & \frac{\partial N_3}{\partial y} \end{bmatrix}$

### Stiffness Matrix K(e)

$\int_{\Omega^{(e)}} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} \partial \Omega^{(e)}= \int \int_{A^{(e)}} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} d x d y = \int_0^1 \int_0^{1-\beta} |J^{(e)}| \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} d \alpha d \beta = |J^{(e)}| \sum_{p=1}^{n_p} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} W_p$
$\oint_{\Gamma_{\infty}^{(e)}} \mathbf{N^T} \alpha \mathbf{N} \partial \Gamma_{\infty}^{(e)}$

### Source Vector f(e)

$\int_{\Omega^{(e)}} \mathbf{N^T} \rho_S \partial \Omega^{(e)}$
$\oint_{\Gamma_q^{(e)}} \mathbf{N^T} \bar D_n \partial \Gamma_q^{(e)}$
$\oint_{\Gamma_V^{(e)}} \mathbf{n^T} \mathbf{N^T} \mathbf{q_n} \partial \Gamma_V^{(e)}$