2D formulation for Electrostatic Problems
From KratosWiki
(Difference between revisions)
(→2D formulation for Triangular Elements) |
(→2D formulation for Triangular Elements) |
||
Line 145: | Line 145: | ||
\end{bmatrix} | \end{bmatrix} | ||
</math> | </math> | ||
+ | |||
+ | |||
+ | ::<math>\mathbf{J^{(e)}} = | ||
+ | \begin{bmatrix} | ||
+ | \displaystyle \frac{\partial x}{\partial \alpha} & \displaystyle \frac{\partial y}{\partial \alpha} \\ \quad \\ | ||
+ | \displaystyle \frac{\partial x}{\partial \beta} & \displaystyle \frac{\partial y}{\partial \beta} | ||
+ | \end{bmatrix} | ||
+ | = | ||
+ | \begin{bmatrix} | ||
+ | - x_1 + x_2 & - y_1 + y_2 \\ | ||
+ | - x_1 + x_3 & - y_1 + y_3 | ||
+ | \end{bmatrix} | ||
+ | \qquad | ||
+ | \mathbf{|J^{(e)}|} = 2 A^{(e)} | ||
+ | </math> | ||
+ | |||
+ | |||
+ | ::<math>B(\alpha,\beta)=\mathbf{J^{(e)}} B(x,y) \qquad B(x,y)= \mathbf{J^{(e)}^{-1}} B(\alpha,\beta)</math> | ||
Line 176: | Line 194: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
Revision as of 16:59, 12 November 2009
The 2D Electrostatic Poisson's equation given by the governing PDE and its boundary conditions:
can be written as (see the General formulation for Electrostatic Problems):
with (n is the number of nodes of the element):
2D formulation for Triangular Elements
After applying the numerical integration for triangular elements by using the natural coordinates, we obtain:
- Failed to parse (PNG conversion failed; check for correct installation of latex and dvipng (or dvips + gs + convert)): B(\alpha,\beta)=\mathbf{J^{(e)}} B(x,y) \qquad B(x,y)= \mathbf{J^{(e)}^{-1}} B(\alpha,\beta)
Stiffness Matrix K(e)