2D formulation for Electrostatic Problems
From KratosWiki
(Difference between revisions)
(→Stiffness Matrix K<sup>(e)</sup>) |
(→Stiffness Matrix K<sup>(e)</sup>) |
||
Line 373: | Line 373: | ||
\int_{\Omega^{(e)}} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} \partial \Omega^{(e)}= | \int_{\Omega^{(e)}} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} \partial \Omega^{(e)}= | ||
\frac{2 A^{(e)}}{2} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} = | \frac{2 A^{(e)}}{2} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} = | ||
− | \frac{1}{ | + | \frac{1}{4 A^{(e)}} |
\begin{bmatrix} | \begin{bmatrix} | ||
- y_3 + y_2 & x_3 + x_2 \\ | - y_3 + y_2 & x_3 + x_2 \\ |
Revision as of 18:43, 12 November 2009
The 2D Electrostatic Poisson's equation given by the governing PDE and its boundary conditions:
can be written as (see the General formulation for Electrostatic Problems):
with (n is the number of nodes of the element):
2D formulation for Triangular Elements
After applying the numerical integration for triangular elements by using the natural coordinates, we obtain:
Stiffness Matrix K(e)