2D formulation for Electrostatic Problems
From KratosWiki
(Difference between revisions)
(→Source Vector f<sup>(e)</sup>) |
(→Source Vector f<sup>(e)</sup>) |
||
Line 399: | Line 399: | ||
\int \int_{A^{(e)}} \mathbf{N^T} \rho_S d x d y = | \int \int_{A^{(e)}} \mathbf{N^T} \rho_S d x d y = | ||
\int_0^1 \int_0^{1-\beta} |\mathbf{J^{(e)}}| \mathbf{N^T} \rho_S d \alpha d \beta = | \int_0^1 \int_0^{1-\beta} |\mathbf{J^{(e)}}| \mathbf{N^T} \rho_S d \alpha d \beta = | ||
+ | |\mathbf{J^{(e)}}| \sum_{p=1}^{n_p} \mathbf{N^T} \rho_S W_p = | ||
</math> | </math> | ||
::<math> | ::<math> | ||
− | = \qquad \qquad | + | = \qquad \qquad |\mathbf{J^{(e)}}| \mathbf{N^T} \rho_S \sum_{p=1}^{n_p} W_p = |
− | + | ||
\frac{|\mathbf{J^{(e)}}|}{2} \mathbf{N^T} \rho_S | \frac{|\mathbf{J^{(e)}}|}{2} \mathbf{N^T} \rho_S | ||
</math> | </math> |
Revision as of 19:19, 12 November 2009
The 2D Electrostatic Poisson's equation given by the governing PDE and its boundary conditions:
can be written as (see the General formulation for Electrostatic Problems):
with (n is the number of nodes of the element):
2D formulation for Triangular Elements
After applying the numerical integration for triangular elements by using the natural coordinates, we obtain:
Stiffness Matrix K(e)
Source Vector f(e)