2D formulation for Electrostatic Problems
From KratosWiki
(Difference between revisions)
(→Source Vector f<sup>(e)</sup>) |
(→2D formulation for Triangular Elements) |
||
Line 112: | Line 112: | ||
\mathbf{N^{(e)}} = | \mathbf{N^{(e)}} = | ||
\begin{bmatrix} | \begin{bmatrix} | ||
− | N_1 | + | N_1 & N_2 & N_3 |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
\end{bmatrix} | \end{bmatrix} | ||
= | = | ||
\begin{bmatrix} | \begin{bmatrix} | ||
− | L_1 | + | L_1 & L_2 & L_3 |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
\end{bmatrix} | \end{bmatrix} | ||
= | = | ||
\begin{bmatrix} | \begin{bmatrix} | ||
− | 1-\alpha-\beta | + | 1-\alpha-\beta & \alpha & \beta |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
\end{bmatrix} | \end{bmatrix} | ||
− | |||
\qquad | \qquad | ||
\mathbf{a^{(e)}} = | \mathbf{a^{(e)}} = |
Revision as of 19:25, 12 November 2009
The 2D Electrostatic Poisson's equation given by the governing PDE and its boundary conditions:
can be written as (see the General formulation for Electrostatic Problems):
with (n is the number of nodes of the element):
2D formulation for Triangular Elements
After applying the numerical integration for triangular elements by using the natural coordinates, we obtain:
Stiffness Matrix K(e)
Source Vector f(e)