# 2D formulation for Electrostatic Problems

From KratosWiki

(Difference between revisions)

(→Source Vector f<sup>(e)</sup>) |
(→Source Vector f<sup>(e)</sup>) |
||

Line 398: | Line 398: | ||

\int_{\Omega^{(e)}} \mathbf{N^T} \rho_S \partial \Omega^{(e)} | \int_{\Omega^{(e)}} \mathbf{N^T} \rho_S \partial \Omega^{(e)} | ||

= 2 A^{(e)} \left [ \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6}\right ]^T \rho_S | = 2 A^{(e)} \left [ \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6}\right ]^T \rho_S | ||

− | = A^{(e)} | + | = A^{(e)} \frac{\rho_S}{3} \left [ 1 \quad 1 \quad 1 \right ]^T |

</math> | </math> | ||

## Revision as of 10:27, 27 November 2009

The 2D Electrostatic Poisson's equation given by the governing PDE and its boundary conditions:

can be written as (see the General formulation for Electrostatic Problems):

with (* n* is the number of nodes of the element):

## 2D formulation for Triangular Elements

After applying the numerical integration for triangular elements by using the natural coordinates, we obtain:

### Stiffness Matrix K^{(e)}

### Source Vector f^{(e)}

**Linear case**(**n**=1 integration point):_{p}