Kazem
From KratosWiki
(Difference between revisions)
(→Initial conditions) |
(→Solution strategy) |
||
Line 49: | Line 49: | ||
* '''Monolithic''' | * '''Monolithic''' | ||
− | Residual based Newton Raphson strategy is exploited to treat nonlinearities. | + | **Residual based Newton Raphson strategy is exploited to treat nonlinearities. |
− | + | ||
==== Elements ==== | ==== Elements ==== |
Revision as of 15:10, 24 July 2013
Contents |
Multifluid module
Introduction
Examples showing the class of problems that the code can solve (2-4 examples)
About this module
- Solves the Navier-Stokes equations for a multi-fluid system considering large jumps in density .
- Tractions are considered continuous at the interface and therefore no jump in viscosity is considered.
- Level Set method is used to determine the interface position at each step.
- Local pressure enrichmnet is considered at the cutted element to capture the discontinuous pressure gradient.
Technical descriptions
Fluid types
- Incompressible fluid
Constitutive laws
- Newtonian
Kinematic approaches
- Eulerian
- With free surface (level set)
Solution strategy
- Monolithic
- Residual based Newton Raphson strategy is exploited to treat nonlinearities.
Elements
3D: Linear tetrahedral elements (It works just in 3D)
- Element name: DPGVMS( Discontinuous Pressure Gradiant with Variational Multi Scale technique)
Boundary conditions
- Velocity boundary condition: Inlet of water
- Pressure boundary condition: Pressure can be imposed strongly or weakly...
- Wall boundary condition:
- Slip boundary condition: If velocity is not assigned to a boundary it is automatically considered as Slip.
- Wall law
- Flag variable?????
Initial conditions
- Zero of the Level set has to be assigned as the initial condition by assigning + and - Distance flag.
Turbulence models
All turbulance models inside KRATOS can be used:
- Smagorinsky-Lily
- Spalart-Allmaras
HPC
The code can be run in shared or distributed memory:
- OpenMP:
- MPI: