Numerical Integration
(→Gauss-Legendre Numerical Integration) |
(→Gauss-Legendre Numerical Integration) |
||
Line 55: | Line 55: | ||
{| border="1" cellpadding="5" cellspacing="0" class="wikitable" style="margin:auto; background:white;" | {| border="1" cellpadding="5" cellspacing="0" class="wikitable" style="margin:auto; background:white;" | ||
! Number of points, ''p'' !! Points, ''±ξ''<sub>''i'' !! Weights, ''w''<sub>''i''</sub> | ! Number of points, ''p'' !! Points, ''±ξ''<sub>''i'' !! Weights, ''w''<sub>''i''</sub> | ||
− | |- | + | |- |
| 1 || 0.0 || 2.0 | | 1 || 0.0 || 2.0 | ||
− | |- | + | |- |
| 2 || 0.5773502692 || 1.0 | | 2 || 0.5773502692 || 1.0 | ||
− | |- | + | |- |
| rowspan="2" | 3 || 0.0 || 0.8888888889 | | rowspan="2" | 3 || 0.0 || 0.8888888889 | ||
− | |- | + | |- |
| 0.774596697 || 0.5555555556 | | 0.774596697 || 0.5555555556 | ||
− | |- | + | |- |
| rowspan="2" | 4 || 0.3399810436 || 0.6521451549 | | rowspan="2" | 4 || 0.3399810436 || 0.6521451549 | ||
− | |- | + | |- |
| 0.8611363116 || 0.3478548451 | | 0.8611363116 || 0.3478548451 | ||
− | |- | + | |- |
| rowspan="3" | 5 || 0.0 || 0.5688888889 | | rowspan="3" | 5 || 0.0 || 0.5688888889 | ||
− | |- | + | |- |
| 0.5384693101 || 0.4786286705 | | 0.5384693101 || 0.4786286705 | ||
− | |- | + | |- |
| 0.9061798459 || 0.2369268851 | | 0.9061798459 || 0.2369268851 | ||
|} | |} |
Revision as of 11:45, 3 November 2009
Numerical integration refers to all the procedures, algorithms and techniques in the numerical analysis to obtain an approximate solution to a definite integral.
That is, how to obtain a numerical value of:
where can be a 1D, 2D or 3D domain.
For our interest in the Finite Element Method, the purpose is to describe how the element matrices can be integrated numerically.
Gauss-Legendre Numerical Integration
To fix the most basic concepts on Numerical Integration, we will focus our description on a one dimensional integration using the Gauss-Legendre quadrature, that is, to solve:
The Gauss-Legendre quadrature establish that the definite integral of a function can be approximate by using a weighted sum of function values at specified points within the domain of integration. An p-point Gaussian quadrature rule is constructed to yield an exact result for polynomials of degree 2p − 1 or less by a suitable choice of the points and weights
for
.
The coordinates and related weights are:
Number of points, p | Points, ±ξi | Weights, wi |
---|---|---|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() | |
![]() |
![]() |
![]() |
![]() |
![]() | |
![]() |
![]() |
![]() |
![]() |
![]() | |
![]() |
![]() |
or, using numerical values:
Number of points, p | Points, ±ξi | Weights, wi |
---|---|---|
1 | 0.0 | 2.0 |
2 | 0.5773502692 | 1.0 |
3 | 0.0 | 0.8888888889 |
0.774596697 | 0.5555555556 | |
4 | 0.3399810436 | 0.6521451549 |
0.8611363116 | 0.3478548451 | |
5 | 0.0 | 0.5688888889 |
0.5384693101 | 0.4786286705 | |
0.9061798459 | 0.2369268851 |
References
- Carlos A. Felippa, "A compendium of FEM integration formulas for symbolic work", Engineering Computations, Vol. 21 No. 8, 2004, pp. 867-890, (c) Emerald Group Publishing Limited [1]
- Numerical Integration
- Gaussian Quadrature