Numerical Integration
(→Gauss-Legendre Numerical Integration) |
(→Gauss-Legendre Numerical Integration) |
||
Line 73: | Line 73: | ||
|- | |- | ||
| 0.9061798459 || 0.2369268851 | | 0.9061798459 || 0.2369268851 | ||
+ | |- | ||
+ | | rowspan="3" | 6 || 0.2386191861 || 0.4679139346 | ||
+ | |- | ||
+ | | 0.6612093865 || 0.3607615730 | ||
+ | |- | ||
+ | | 0.9324695142 || 0.1713244924 | ||
+ | |- | ||
+ | | rowspan="4" | 7 || 0.0 || 0.4179591837 | ||
+ | |- | ||
+ | | 0.4058451514 || 0.3818300505 | ||
+ | |- | ||
+ | | 0.7415311856 || 0.2797053915 | ||
+ | |- | ||
+ | | 0.9491079123 || 0.1294849662 | ||
+ | |- | ||
+ | | rowspan="4" | 8 || 0.1834346425 || 0.3626837834 | ||
+ | |- | ||
+ | | 0.5255324099 || 0.3137066459 | ||
+ | |- | ||
+ | | 0.7966664774 || 0.2223810345 | ||
+ | |- | ||
+ | | 0.9602898565 || 0.1012285636 | ||
|} | |} | ||
Revision as of 11:50, 3 November 2009
Numerical integration refers to all the procedures, algorithms and techniques in the numerical analysis to obtain an approximate solution to a definite integral.
That is, how to obtain a numerical value of:
where can be a 1D, 2D or 3D domain.
For our interest in the Finite Element Method, the purpose is to describe how the element matrices can be integrated numerically.
Gauss-Legendre Numerical Integration
To fix the most basic concepts on Numerical Integration, we will focus our description on a one dimensional integration using the Gauss-Legendre quadrature, that is, to solve:
The Gauss-Legendre quadrature establish that the definite integral of a function can be approximate by using a weighted sum of function values at specified points within the domain of integration. An p-point Gaussian quadrature rule is constructed to yield an exact result for polynomials of degree 2p − 1 or less by a suitable choice of the points and weights
for
.
The coordinates and related weights are:
Number of points, p | Points, ±ξi | Weights, wi |
---|---|---|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() | |
![]() |
![]() |
![]() |
![]() |
![]() | |
![]() |
![]() |
![]() |
![]() |
![]() | |
![]() |
![]() |
or, using numerical values:
Number of points, p | Points, ±ξi | Weights, wi |
---|---|---|
1 | 0.0 | 2.0 |
2 | 0.5773502692 | 1.0 |
3 | 0.0 | 0.8888888889 |
0.774596697 | 0.5555555556 | |
4 | 0.3399810436 | 0.6521451549 |
0.8611363116 | 0.3478548451 | |
5 | 0.0 | 0.5688888889 |
0.5384693101 | 0.4786286705 | |
0.9061798459 | 0.2369268851 | |
6 | 0.2386191861 | 0.4679139346 |
0.6612093865 | 0.3607615730 | |
0.9324695142 | 0.1713244924 | |
7 | 0.0 | 0.4179591837 |
0.4058451514 | 0.3818300505 | |
0.7415311856 | 0.2797053915 | |
0.9491079123 | 0.1294849662 | |
8 | 0.1834346425 | 0.3626837834 |
0.5255324099 | 0.3137066459 | |
0.7966664774 | 0.2223810345 | |
0.9602898565 | 0.1012285636 |
References
- Carlos A. Felippa, "A compendium of FEM integration formulas for symbolic work", Engineering Computations, Vol. 21 No. 8, 2004, pp. 867-890, (c) Emerald Group Publishing Limited [1]
- Numerical Integration
- Gaussian Quadrature