Numerical Integration

From KratosWiki
Revision as of 11:40, 3 November 2009 by JMora (Talk | contribs)
Jump to: navigation, search

Numerical integration refers to all the procedures, algorithms and techniques in the numerical analysis to obtain an approximate solution to a definite integral.

That is, how to obtain a numerical value of:

\int_{\lambda_a}^{\lambda_b}\! f(\lambda)\, d\lambda.

where \lambda \, can be a 1D, 2D or 3D domain.

For our interest in the Finite Element Method, the purpose is to describe how the element matrices can be integrated numerically.

Gauss-Legendre Numerical Integration

To fix the most basic concepts on Numerical Integration, we will focus our description on a one dimensional integration using the Gauss-Legendre quadrature, that is, to solve:

I=\int_{-1}^{+1} f(\xi) d\xi

The Gauss-Legendre quadrature establish that the definite integral of a function can be approximate by using a weighted sum of function values at specified points within the domain of integration. An p-point Gaussian quadrature rule is constructed to yield an exact result for polynomials of degree 2p − 1 or less by a suitable choice of the points   \xi_i \,   and weights   w_i \,   for   i = 1, \cdots p \,.

\int_{-1}^{+1} f(\xi)\,d\xi \approx \sum_{i=1}^p w_i f(\xi_i)

The coordinates and related weights are:

Number of points, p Points, ±ξi Weights, wi
1 0.0 2.0
2 \pm\sqrt{1/3} 1
3 0.0 89
\pm\sqrt{3/5} 59
4 \pm\sqrt{\Big( 3 - 2\sqrt{6/5} \Big)/7} \tfrac{18+\sqrt{30}}{36}
\pm\sqrt{\Big( 3 + 2\sqrt{6/5} \Big)/7} \tfrac{18-\sqrt{30}}{36}
5 0.0 128225
\pm\tfrac13\sqrt{5-2\sqrt{10/7}} \tfrac{322+13\sqrt{70}}{900}
\pm\tfrac13\sqrt{5+2\sqrt{10/7}} \tfrac{322-13\sqrt{70}}{900}

or, using numerical values:

Number of points, p Points, ±ξi Weights, wi
1 0.0 2.0
2 0.5773502692 1
3 0.0 0.8888888889
0.774596697 0.5555555556
4 0.3399810436 0.6521451549
0.8611363116 0.3478548451
5 0.0 0.5688888889
0.5384693101 0.4786286705
0.9061798459 0.2369268851


  1. Carlos A. Felippa, "A compendium of FEM integration formulas for symbolic work", Engineering Computations, Vol. 21 No. 8, 2004, pp. 867-890, (c) Emerald Group Publishing Limited [1]
  2. Numerical Integration
  3. Gaussian Quadrature

Personal tools