One-dimensional Shape Functions
From KratosWiki
Shape Functions for 1D problems
- If a polynomial is selected as basis function, then:
Contents |
Linear case
- Two nodes:
- with:
the determinant of the matrix.
Quadratic case
- Three nodes:
Cubic case
- Four nodes:
- and so on... (note that the expressions for the N2, N3 and N4 can be easily obtained by swapping the x2 values for the x1 values in the first case, x3 for x1 in the second case and x4 for x1 in the last one.
- To check by yourself the functions, use this Matlab code
Lagrangian elements
- To avoid solving this so complex system of equations, the well-known properties of the Lagragian polynomials can be used.
- All these shape functions are based in the polynomial Lagrange[1] and can be written as follows:
- This equation is easier to implement, as can be checked using this Matlab code.
- An example of using nine nodes for each element, for which the expressions are unwriteable is shown.
Normalised Shape Functions
- All these expressions can be normalised using the natural coordinate system, based in
, a variable defined in terms of
, the central coordinate of the element, as follows:
- Note that
in the left node,
in the central point of the element, and
in the right node of the element.
- In this way, all the shape functions can be expressed and, therefore obtained, independently of the real geometry, and then easier to implement.
- For the Linear case, this transformation can be illustrated:
- The final specific expressions for the 1D Linear element are:
- For 1D quadratic elements are:
- Finally, for 1D cubic elements the normalised shape functions are: