Poisson's Equation in Electrostatics

From KratosWiki
(Difference between revisions)
Jump to: navigation, search
(References)
 
(One intermediate revision by one user not shown)
Line 20: Line 20:
  
 
[[Category: Electrostatic Application]]
 
[[Category: Electrostatic Application]]
[[Category: Theory]]
+
[[Category: Poisson's Equation]]
 +
[[Category: Electrostatic Theory]]

Latest revision as of 09:06, 4 November 2009

A detailed form of the Poisson's Equation[1] in Electrostatics is:


\frac{\partial}{\partial x}\cdot \left( \varepsilon_{x} \cdot \frac{\partial V(x,y,z)}{\partial x}\right) + \frac{\partial}{\partial y}\cdot \left(\varepsilon_{y} \cdot \frac{\partial V(x,y,z)}{\partial y} \right) 
+ \frac{\partial}{\partial z}\cdot \left(\varepsilon_{z} \cdot \frac{\partial V(x,y,z)}{\partial z} \right)  + \rho_v(x,y,z)=0


with:

D_x = -\varepsilon_{x} \frac{\partial V(x,y,z)}{\partial x} \quad D_y = -\varepsilon_{y} \frac{\partial V(x,y,z)}{\partial y} \quad D_z = -\varepsilon_{z} \frac{\partial V(x,y,z)}{\partial z}
E_x = -\frac{\partial V(x,y,z)}{\partial x} \qquad E_y = -\frac{\partial V(x,y,z)}{\partial y} \qquad E_z = -\frac{\partial V(x,y,z)}{\partial z}


References

  1. Poisson's Equation
  2. Electrostatics Summary
Personal tools
Categories