Python code of the Resolution of the 1D Poisson's equation using local Shape Functions

```# Resolution of Poisson 1D using FEM weak form

from numpy import *

# Problem definition
x0=0.0
xL=15.0
Nx=101
fi0=3.0   # Dirichlet condition
qL=13.0   # Neumann condition
km=1.0     # material

# definition of nodes and elements
long=xL-x0              # length of domain
nnodes=5                # number of total nodes
nnod=2                  # number of nodes for each element
nelems=nnodes-1         # number of elements
interv=long/(nnodes-1)  # size of each element
xi=zeros(nnodes,float)
xi[0]=x0
for i in range(1,nnodes):
xi[i]=xi[i-1]+interv

f=zeros((nelems,nnod),float)
K=zeros((nelems,nnod,nnod),float)
# obtaining elementary matrix components
for i in range(0,nelems):
for j in range(0,nnod):
f[i,j]=Q0*interv/2
for k in range(0,nnod):
K[i,j,k]=pow(-1,j+k)*(km/interv)

# assembly of global matrix components
fg=zeros(nnodes,float)
Kg=zeros((nnodes,nnodes),float)
for i in range(0,nelems):
for j in range(0,nnod):
fg[i+j]=fg[i+j]+f[i,j]
for k in range(0,nnod):
Kg[i+j,i+k]=Kg[i+j,i+k]+K[i,j,k]

# assembly of boundary conditions
fg[nnodes-1]=fg[nnodes-1]-qL

# Applying Dirichlet condition (remove the equations related to thr first unknown)
Kf=Kg[1:,1:]
cfi=Kg[1:,0]*fi0
ff=fg[1:]-cfi

fi=inner(linalg.inv(Kf),ff)

fit=hstack((fi0,fi))

# exact solution
realFi=-(Q0/(2*km))*pow(xi,2)+(-qL+Q0*(xL-x0))*xi/km+fi0;

print "end of the programm"

```