Test page with index 1

From KratosWiki
(Difference between revisions)
Jump to: navigation, search
(Created page with "{| class="radius" cellspacing="10" cellpadding="0" width="100%" |- | colspan = "2" style="background:#ffffff; border:1px solid #eeeeee; -moz-border-radius-topleft:0px; -moz-bord...")
 
 
Line 14: Line 14:
 
------------------------------->
 
------------------------------->
 
|width="75%" style="background:#EAF5FB; border:1px solid #e1eaee; font-size:100%; -moz-border-radius-topleft:0px; -moz-border-radius-bottomleft:0px; padding:7px 7px 7px 7px;" valign="top"|
 
|width="75%" style="background:#EAF5FB; border:1px solid #e1eaee; font-size:100%; -moz-border-radius-topleft:0px; -moz-border-radius-bottomleft:0px; padding:7px 7px 7px 7px;" valign="top"|
<!-- BLOCK 1: General -->
+
<!-- BLOCK 1: Article -->
 
{| width=100% cellpadding="0" cellspacing="0" valign="top" style="background:#F1FAFF;"
 
{| width=100% cellpadding="0" cellspacing="0" valign="top" style="background:#F1FAFF;"
 
<!-- TITLE 1 -->
 
<!-- TITLE 1 -->
 
|-
 
|-
 
! style="background:#e1eaee; border:1px solid #d0d9dd; text-align:center"  |  
 
! style="background:#e1eaee; border:1px solid #d0d9dd; text-align:center"  |  
<div style="font-size:120%">General</div>
+
<div style="font-size:120%">Test Page 1 Title</div>
 
<!-- TITLE 1 (END)-->
 
<!-- TITLE 1 (END)-->
 
<!-- TEXT 1 -->
 
<!-- TEXT 1 -->
Line 29: Line 29:
 
<!-- BLOCK 1 (END) -->
 
<!-- BLOCK 1 (END) -->
  
 +
<!-- LEFT BOX (END) -->
  
 
<!-- TEXT 2 (END) -->
 
|}
 
<!-- BLOCK 2 (END) -->
 
 
<!-- LEFT BOX (END) -->
 
 
<!-----------------------------
 
<!-----------------------------
 
         RIGHT BOX
 
         RIGHT BOX
Line 45: Line 40:
 
|-
 
|-
 
! style="background:#e1eaee; border:1px solid #ddddc0; text-align:center;"  |  
 
! style="background:#e1eaee; border:1px solid #ddddc0; text-align:center;"  |  
<div style="font-size:120%">Social</div>
+
<div style="font-size:120%">Index</div>
 
<!-- TITLE 1 (END)-->
 
<!-- TITLE 1 (END)-->
 
<!-- TEXT 1 -->
 
<!-- TEXT 1 -->
Line 56: Line 51:
 
|}
 
|}
 
<!-- BLOCK 1 (END) -->
 
<!-- BLOCK 1 (END) -->
 
+
|}
 
<!-- RIGHT BOX (END) -->
 
<!-- RIGHT BOX (END) -->
  

Latest revision as of 17:13, 22 July 2013


kratos.png
 

Kratos' T u t o r i a l s


Test Page 1 Title

Parametric interpolation

For a two nodes lineal element, the unknow can be written:


\hat \varphi (\xi) = N_1^{(e)}(\xi) \varphi_1^{(e)} + N_2^{(e)}(\xi) \varphi_2^{(e)}


and the gradient:


g = \frac {d \hat \varphi}{dx} = \frac {d N_1^{(e)}(\xi)}{dx} \varphi_1^{(e)} + \frac {d N_2^{(e)}(\xi)}{dx} \varphi_2^{(e)}


developing the above expressions (see Lagrangian Elements):


\frac {d N_1^{(e)}(\xi)}{dx} = \frac {d N_1^{(e)}(\xi)}{d \xi} \frac {d \xi}{dx} = \frac {d}{d \xi} \left( \frac {1 - \xi}{2} \right) \frac {d \xi}{dx} = - \frac{1}{2} \frac {d \xi}{dx}


\frac {d N_2^{(e)}(\xi)}{dx} = \frac {d N_2^{(e)}(\xi)}{d \xi} \frac {d \xi}{dx} = \frac {d}{d \xi} \left( \frac {1 + \xi}{2} \right) \frac {d \xi}{dx} = \frac{1}{2} \frac {d \xi}{dx}


and therefore:


g = - \frac{1}{2} \left( \frac{d \xi}{dx} \right) \varphi_1^{(e)} + \frac{1}{2} \left( \frac{d \xi}{dx} \right) \varphi_2^{(e)}


to compute \frac{d \xi}{dx} is necessary to know the relation between x and ξ, that can be obtained by using a parametric interpolation of the geometry.
For example, by knowing the x_1, x_2,... , x_m \, coordinates of m points of the element, any x value can be computed, as follows:


x = \hat N_1^{(e)}(\xi) x_1 + \hat N_2^{(e)}(\xi) x_2 + ... + \hat N_m^{(e)} (\xi) x_m


with N_i^{(e)} geometrical interpolation functions equivalent to the Shape Functions (having the 1 value for the i node and 0 for the m-1 other nodes).


As an example, check the following Parametric interpolation for a cubic function.


Therefore, for each element, it can be considered two kinds of points:
  • N nodes, which define the Shape Functions, N_i \, and used to interpolate the values of the unkown;
  • m geometrical points, which define the geometrical interpolation functions, \hat N_i \, used to interpolate the geometry;
For complex geometries, m could be greater than N, and in this case is called superparametric formulation;
For simple geometries, m could be smaller than N, and in this case is called subparametric formulation;
If m is equal to N, then N_i \equiv \hat N_i \,, and the formulation is called isoparametric;


Isoparametric formulation for a two nodes element

Isoparametric formulation for a three nodes quadratic element


Index
Personal tools
Categories