Testing a python file as a direct copy&paste
Line 1: | Line 1: | ||
<nowiki> | <nowiki> | ||
− | |||
################################################################## | ################################################################## | ||
################################################################## | ################################################################## |
Revision as of 19:18, 28 November 2007
################################################################## ################################################################## #setting the domain size for the problem to be solved domain_size = 2 ################################################################## ################################################################## ## ATTENTION: here the order is important #including kratos path kratos_libs_path = '../../../../libs' ##kratos_root/libs #kratos_libs_path = 'C:/kratosR1/libs' ##kratos_root/libs kratos_applications_path = '../../../../applications/' ##kratos_root/applications import sys sys.path.append(kratos_libs_path) sys.path.append(kratos_applications_path) #importing Kratos main library from Kratos import * kernel = Kernel() #defining kernel #importing applications import applications_interface applications_interface.Import_IncompressibleFluidApplication = True applications_interface.ImportApplications(kernel, kratos_applications_path) ## from now on the order is not anymore crucial ################################################################## ################################################################## from KratosR1IncompressibleFluidApplication import * #defining a model part model_part = ModelPart("FluidPart"); ##importing the solver files and adding the variables import incompressible_fluid_solver incompressible_fluid_solver.AddVariables(model_part) #adding of Variables to Model Part should be here when the "very fix container will be ready" #reading a model gid_io = GidIO("cavity2d",GiDPostMode.GiD_PostBinary) ##gid_io.ReadMesh(model_part.GetMesh()) gid_io.ReadModelPart(model_part) gid_io.WriteMesh((model_part).GetMesh(),domain_size,GiDPostMode.GiD_PostBinary); print model_part #the buffer size should be set up here after the mesh is read for the first time model_part.SetBufferSize(3) ##add Degrees of Freedom to all of the nodes incompressible_fluid_solver.AddDofs(model_part) #creating a fluid solver object fluid_solver = incompressible_fluid_solver.IncompressibleFluidSolver(model_part,domain_size) fluid_solver.laplacian_form = 2; fluid_solver.predictor_corrector = True fluid_solver.vel_toll = 1e-3 fluid_solver.time_order = 2 fluid_solver.echo_level = 0 #pILUPrecond = ILU0Preconditioner() #fluid_solver.pressure_linear_solver = BICGSTABSolver(1e-9, 5000,pILUPrecond) pDiagPrecond = DiagonalPreconditioner() fluid_solver.velocity_linear_solver = BICGSTABSolver(1e-9, 5000,pDiagPrecond) fluid_solver.pressure_linear_solver = BICGSTABSolver(1e-9, 5000,pDiagPrecond) ##fluid_solver.pressure_linear_solver = SkylineLUFactorizationSolver(); fluid_solver.Initialize() #settings to be changed Re = 100.0 nsteps = 200 output_step = 1 Dt = 1000.0/Re if(Dt > 0.1): Dt = 0.1 out = 0 for node in model_part.Nodes: node.SetSolutionStepValue(VISCOSITY,0,1.0/Re) for step in range(1,nsteps): print "line49" time = Dt*step print time model_part.CloneTimeStep(time) print "qui" print time #print model_part.ProcessInfo()[TIME] #solving the fluid problem if(step > 3): fluid_solver.Solve() print "li" #print the results if(out == output_step): gid_io.WriteNodalResults(PRESSURE,model_part.Nodes,time,0) gid_io.WriteNodalResults(VELOCITY,model_part.Nodes,time,0) gid_io.WriteNodalResults(PRESS_PROJ,model_part.Nodes,time,0) gid_io.WriteNodalResults(CONV_PROJ,model_part.Nodes,time,0) gid_io.WriteNodalResults(NODAL_AREA,model_part.Nodes,time,0) gid_io.WriteNodalResults(VISCOSITY,model_part.Nodes,time,0) out = 0 out = out + 1 node = model_part.Nodes[1] print node </html>