# Two-dimensional Shape Functions

(Difference between revisions)
 Revision as of 10:30, 4 November 2009 (view source)JMora (Talk | contribs)← Older edit Revision as of 10:31, 4 November 2009 (view source)JMora (Talk | contribs) Newer edit → Line 30: Line 30: ! order ''n'' !! new polynomial terms !! number of terms ''p'' ! order ''n'' !! new polynomial terms !! number of terms ''p'' |- align="center" |- align="center" − |   || $1 \,$ || 1 + |   || $1 \,$ || $1 \,$ |- align="center" |- align="center" − | Linear || $x \qquad y \,$ || 3 + | Linear || $x \qquad y \,$ || $3 \,$ |- align="center" |- align="center" − | Quadratic  || $x^2 \qquad 2 x y \qquad y^2\,$  || 6 + | Quadratic  || $x^2 \qquad 2 x y \qquad y^2\,$  || $6 \,$ |- align="center" |- align="center" − | Cubic || $x^3 \qquad 3 x^2 y \qquad 3 x y^2 \qquad y^3\,$  || 10 + | Cubic || $x^3 \qquad 3 x^2 y \qquad 3 x y^2 \qquad y^3\,$  || $10 \,$ |- align="center" |- align="center" − | Quartic || $x^4 \qquad 4 x^3 y \qquad 6 x^2 y^2 \qquad 4 x y^3 \qquad y^4\,$  || 15 + | Quartic || $x^4 \qquad 4 x^3 y \qquad 6 x^2 y^2 \qquad 4 x y^3 \qquad y^4\,$  || $15 \,$ |} |}

## Revision as of 10:31, 4 November 2009

Shape functions are selected to fit as exact as possible the Finite Element Solution. If this solution is a combination of polynomial functions of nth order, these functions should include a complete polynomial of equal order.

That is, a complete polynomial of nth order can be written as: $f(x,y)=\sum_{i=1}^p \alpha_i x^j y^k \qquad j+k \le n$

with: $\qquad p=\frac{(n+1)(n+2)}{2}$   the number of terms.

More specifically:

polynomial order n number of terms p $f(x,y) \,$
Constant: $0 \,$ $1 \,$ $\alpha \,$
Linear: $1 \,$ $3 \,$ $\alpha_1+\alpha_2 x + \alpha_3 y \,$
Quadratic: $2 \,$ $6 \,$ $\alpha_1+\alpha_2 x + \alpha_3 + \alpha_4 x y +\alpha_5 x^2 + \alpha_6 y^2\,$

A quick way to easily obtain the terms of a complete polynomial is by using the Pascal's triangle:

order n new polynomial terms number of terms p $1 \,$ $1 \,$
Linear $x \qquad y \,$ $3 \,$
Quadratic $x^2 \qquad 2 x y \qquad y^2\,$ $6 \,$
Cubic $x^3 \qquad 3 x^2 y \qquad 3 x y^2 \qquad y^3\,$ $10 \,$
Quartic $x^4 \qquad 4 x^3 y \qquad 6 x^2 y^2 \qquad 4 x y^3 \qquad y^4\,$ $15 \,$

For example, in the case of a lineal polynomial:

f(x,y) = α1 + α2x + α3y

can only fit polynomial functions of pth order if they content a polynomial function

for any polynomial function of pth order it is enough to use p-1 integration points.