Two-dimensional Shape Functions
From KratosWiki
Shape functions are selected to fit as exact as possible the Finite Element Solution. If this solution is a combination of polynomial functions of nth order, these functions should include a complete polynomial of equal order.
That is, a complete polynomial of nth order can be written as:
with: the number of terms.
More specifically:
polynomial order n | number of terms p | ![]() |
---|---|---|
Constant: ![]() |
![]() |
![]() |
Linear: ![]() |
![]() |
![]() |
Quadratic: ![]() |
![]() |
![]() |
A quick way to easily obtain the terms of a complete polynomial is by using the Pascal's triangle:
order n | new polynomial terms | number of terms p |
---|---|---|
![]() |
![]() | |
Linear | ![]() |
![]() |
Quadratic | ![]() |
![]() |
Cubic | ![]() |
![]() |
Quartic | ![]() |
![]() |
Contents |
Shape Functions for Triangular Elements
The Three Node Linear Triangle
- The solution
for each triangular element can be approached by their corresponding
to be expressed using the shape functions:
- If the shape functions are lineal polynomials (three-node triangular element, n=3), and remembering:
- this expression can be written as:
with
the element area and
- And the system of equations is:
- The element area is computed as the half of the determinant of the coordinates matrix:
- Finally, the different parameters can be expressed in terms of the nodal local coordinates as:
- with
Areal Coordinates
In order to generalise the procedure to obtain the shape functions, the areal coordinates is a very useful transformation.