Two-dimensional Shape Functions
Shape functions are selected to fit as exact as possible the Finite Element Solution. If this solution is a combination of polynomial functions of nth order, these functions should include a complete polynomial of equal order.
That is, a complete polynomial of nth order can be written as:
with: the number of terms.
More specifically:
polynomial order n | number of terms p | ![]() |
---|---|---|
Constant: ![]() |
![]() |
![]() |
Linear: ![]() |
![]() |
![]() |
Quadratic: ![]() |
![]() |
![]() |
A quick way to easily obtain the terms of a complete polynomial is by using the Pascal's triangle:
order n | new polynomial terms | number of terms p |
---|---|---|
![]() |
![]() | |
Linear | ![]() |
![]() |
Quadratic | ![]() |
![]() |
Cubic | ![]() |
![]() |
Quartic | ![]() |
![]() |
Contents |
Shape Functions for Triangular Elements
The Three Node Linear Triangle
- The solution
for each triangular element can be approached by their corresponding
to be expressed using the shape functions:
- If the shape functions are lineal polynomials (three-node triangular element, n=3), and remembering:
- this expression can be written as:
with
the element area and
- And the system of equations is:
- The element area is computed as the half of the determinant of the coordinates matrix:
- Finally, the different parameters can be expressed in terms of the nodal local coordinates as:
- with
Areal Coordinates
In order to generalise the procedure to obtain the shape functions, the areal coordinates is a very useful transformation.
In a triangle, areal or barycentric coordinates are defined as each of the partial subareas obtained by dividing the triangle in three sections.
That is, if we use a inner point P of the triangle of area A as the common vertex of the three subareas A1, A2 and A3, then:
Note that:
- A1 + A2 + A3 = A
- L1 + L2 + L3 = 1
- If P is the Centroid or Center of Mass of the triangle, then L1 = L2 = L3 = 1/3
For the Finite Element Method is also interesting to note that:
with xp and yp the coordinates of P or any other point inside the triangle (x,y). This is equivalent to the following system of equations:
that is exactly the shape functions for a triangular element of three nodes.
Natural Coordinates
It is usual to define the triangle in terms of a normalised geometry (natural coordinates) as is showed in the figure:
Therefore Failed to parse (unknown function\quuad): N_2 = \frac{A_2}{A} = \frac{\frac{1 \times \alpha }{2}}{\frac{1 \times 1}{2}} \quuad N_3 = \frac{A_3}{A} = \frac{\frac{1 \times \beta}{2}}{\frac{1 \times 1}{2}}
\quuad N_1 = \frac{A_1}{A} = \frac{A - A_2 - A_3}{A} = 1 - N_2 - N_3 </math>