2D formulation for Electrostatic Problems
From KratosWiki
(Difference between revisions)
Line 8: | Line 8: | ||
\begin{cases} | \begin{cases} | ||
\left . V - \bar V = 0 \right |_{\Gamma_{V}} & in ~ \Gamma_{\varphi} \\ | \left . V - \bar V = 0 \right |_{\Gamma_{V}} & in ~ \Gamma_{\varphi} \\ | ||
+ | \, \\ | ||
\left . \hat n \vec{D} - \bar D_n = 0 \right |_{\Gamma_{q}} & in ~ \Gamma_{q} \\ | \left . \hat n \vec{D} - \bar D_n = 0 \right |_{\Gamma_{q}} & in ~ \Gamma_{q} \\ | ||
− | \left . \frac{\partial V}{\partial r} \right |_{\Gamma_{\infty}} \approx - \frac{V}{r^{ | + | \, \\ |
+ | \left . \frac{\partial V}{\partial r} \right |_{\Gamma_{\infty}} \approx - \frac{V}{r^{exp}} & in ~ \Gamma_{\infty} | ||
\end{cases} | \end{cases} | ||
</math> | </math> | ||
Line 85: | Line 87: | ||
− | ::<math>\alpha = \frac{1}{|r-r_0|^{ | + | ::<math>\alpha = \frac{1}{|r-r_0|^{exp}} \qquad with \quad exp=0.5, 1, 2...</math> |
Revision as of 15:24, 30 October 2009
The 2D Electrostatic Poisson's equation given by the governing PDE and its boundary conditions:
can be written as (see the General formulation for Electrostatic Problems):
with (n is the number of nodes of the element):