2D formulation for Electrostatic Problems

From KratosWiki
(Difference between revisions)
Jump to: navigation, search
(2D formulation for Triangular Elements)
Line 94: Line 94:
 
=== Stiffness Matrix K<sup>(e)</sup> ===
 
=== Stiffness Matrix K<sup>(e)</sup> ===
  
::<math>\int_{\Omega^{(e)}} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B}  \partial \Omega^{(e)}</math>
+
::<math>
 +
\int_{\Omega^{(e)}} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B}  \partial \Omega^{(e)}=
 +
\int \int_{A^{(e)}} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} \partial x \partial y =
 +
\int_0^1 \int_0^{1-\beta} |J^{(e)}| \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} \partial \alpha \partial \beta
 +
</math>
  
 
::<math>\oint_{\Gamma_{\infty}^{(e)}} \mathbf{N^T} \alpha \mathbf{N} \partial \Gamma_{\infty}^{(e)}</math>
 
::<math>\oint_{\Gamma_{\infty}^{(e)}} \mathbf{N^T} \alpha \mathbf{N} \partial \Gamma_{\infty}^{(e)}</math>

Revision as of 19:12, 11 November 2009

The 2D Electrostatic Poisson's equation given by the governing PDE and its boundary conditions:


 A(V) = \left[ \frac{\partial}{\partial x}\cdot \left( \varepsilon_{x} \cdot \frac{\partial}{\partial x}\right) + \frac{\partial}{\partial y}\cdot \left(\varepsilon_{y} \cdot \frac{\partial}{\partial y} \right) \right]V(x,y) + \rho_S = 0  ~~ in ~ \Omega


 B(V) = 
\begin{cases} 
  \left . V - \bar V = 0 \right |_{\Gamma_{V}}  & in ~ \Gamma_{\varphi} \\
  \, \\
  \left . \hat n \vec{D} - \bar D_n = 0 \right |_{\Gamma_{q}}  & in ~ \Gamma_{q} \\
  \, \\
  \left . \frac{\partial V}{\partial r} \right |_{\Gamma_{\infty}} \approx - \frac{V}{r^{exp}} & in ~ \Gamma_{\infty}
\end{cases}


can be written as (see the General formulation for Electrostatic Problems):


 
    {
    \int_{\Omega} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} \mathbf{a}  \partial \Omega + 
    \oint_{\Gamma_{\infty}} \mathbf{N^T} \alpha \mathbf{N} \mathbf{a} \partial \Gamma_{\infty} = 
    \int_{\Omega} \mathbf{N^T} \rho_S \partial \Omega -
    \oint_{\Gamma_q} \mathbf{N^T} \bar D_n \partial \Gamma_q -
    \oint_{\Gamma_V} \mathbf{n^T} \mathbf{N^T} \mathbf{q_n} \partial \Gamma_V
    }


\mathbf{K} \mathbf{a} \,= \mathbf{f}


\mathbf{K}^{(e)}=
    \int_{\Omega^{(e)}} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B}  \partial \Omega^{(e)} + 
    \oint_{\Gamma_{\infty}^{(e)}} \mathbf{N^T} \alpha \mathbf{N} \partial \Gamma_{\infty}^{(e)}
\mathbf{f}^{(e)}=
    \int_{\Omega^{(e)}} \mathbf{N^T} \rho_S \partial \Omega^{(e)} -
    \oint_{\Gamma_q^{(e)}} \mathbf{N^T} \bar D_n \partial \Gamma_q^{(e)} -
    \oint_{\Gamma_V^{(e)}} \mathbf{n^T} \mathbf{N^T} \mathbf{q_n} \partial \Gamma_V^{(e)}



with (n is the number of nodes of the element):


 V (x,y) \cong \hat V (x,y) = \sum_{i=0}^n N_i (x,y) a_i = \mathbf{N}^{(e)} · \mathbf{a}^{(e)}


\mathbf{N^{(e)}} = 
   \begin{bmatrix} 
     N_1 \\ 
     \, \\
     N_2 \\ 
     \, \\
     \vdots \\
     \, \\
     N_n 
   \end{bmatrix}
\qquad
   \mathbf{a^{(e)}} = 
   \begin{bmatrix} 
     a_1 \\ 
     \, \\
     a_2 \\ 
     \, \\
     \vdots \\
     \, \\
     a_n 
   \end{bmatrix}
\qquad
   \mathbf{B}= \left [ \mathbf{B_1 B_2 ... B_n} \right ]
\qquad
\mathbf{B_i}=
   \begin{bmatrix} 
     \frac{\partial N_i}{\partial x} \\ 
     \, \\
     \frac{\partial N_i}{\partial y} 
   \end{bmatrix}


\alpha = \frac{1}{|r-r_0|^{exp}} \qquad with \quad exp=0.5, 1, 2...


2D formulation for Triangular Elements

Stiffness Matrix K(e)


\int_{\Omega^{(e)}} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B}  \partial \Omega^{(e)}=
\int \int_{A^{(e)}} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} \partial x \partial y = 
\int_0^1 \int_0^{1-\beta} |J^{(e)}| \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} \partial \alpha \partial \beta
\oint_{\Gamma_{\infty}^{(e)}} \mathbf{N^T} \alpha \mathbf{N} \partial \Gamma_{\infty}^{(e)}


Source Vector f(e)

\int_{\Omega^{(e)}} \mathbf{N^T} \rho_S \partial \Omega^{(e)}
\oint_{\Gamma_q^{(e)}} \mathbf{N^T} \bar D_n \partial \Gamma_q^{(e)}
\oint_{\Gamma_V^{(e)}} \mathbf{n^T} \mathbf{N^T} \mathbf{q_n} \partial \Gamma_V^{(e)}
Personal tools
Categories