2D formulation for Electrostatic Problems
From KratosWiki
(Difference between revisions)
(→2D formulation for Triangular Elements) |
(→2D formulation for Triangular Elements) |
||
Line 178: | Line 178: | ||
\int_{\Omega^{(e)}} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} \partial \Omega^{(e)}= | \int_{\Omega^{(e)}} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} \partial \Omega^{(e)}= | ||
\int \int_{A^{(e)}} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} d x d y = | \int \int_{A^{(e)}} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} d x d y = | ||
− | \int_0^1 \int_0^{1-\beta} |J^{(e)}| \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} d \alpha d \beta = | + | \int_0^1 \int_0^{1-\beta} |\mathbf{J^{(e)}}| \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} d \alpha d \beta = |
− | |J^{(e)}| \sum_{p=1}^{n_p} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} W_p | + | |\mathbf{J^{(e)}}| \sum_{p=1}^{n_p} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} W_p |
</math> | </math> | ||
Revision as of 16:24, 12 November 2009
The 2D Electrostatic Poisson's equation given by the governing PDE and its boundary conditions:
can be written as (see the General formulation for Electrostatic Problems):
with (n is the number of nodes of the element):
2D formulation for Triangular Elements
After applying the numerical integration for triangular elements by using the natural coordinates, we obtain: