2D formulation for Electrostatic Problems
From KratosWiki
(Difference between revisions)
(→Stiffness Matrix K<sup>(e)</sup>) |
(→2D formulation for Triangular Elements) |
||
Line 185: | Line 185: | ||
\frac{|\mathbf{J^{(e)}}|}{2} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} | \frac{|\mathbf{J^{(e)}}|}{2} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} | ||
</math> | </math> | ||
+ | |||
+ | |||
+ | ::<math>\mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} = | ||
+ | \begin{bmatrix} | ||
+ | \displaystyle \frac{\partial N_1}{\partial x} & | ||
+ | \displaystyle \frac{\partial N_1}{\partial y} \\ | ||
+ | \, \\ | ||
+ | \displaystyle \frac{\partial N_2}{\partial x} & | ||
+ | \displaystyle \frac{\partial N_2}{\partial y} \\ | ||
+ | \, \\ | ||
+ | \displaystyle \frac{\partial N_3}{\partial x} & | ||
+ | \displaystyle \frac{\partial N_3}{\partial y} | ||
+ | \end{bmatrix} | ||
+ | \begin{bmatrix} | ||
+ | \displaystyle \varepsilon_x & 0 \\ | ||
+ | \, \\ | ||
+ | 0 & \displaystyle \varepsilon_y | ||
+ | \end{bmatrix} | ||
+ | \mathbf{B}= | ||
+ | \begin{bmatrix} | ||
+ | \displaystyle \frac{\partial N_1}{\partial x} & | ||
+ | \displaystyle \frac{\partial N_2}{\partial x} & | ||
+ | \displaystyle \frac{\partial N_3}{\partial x}\\ | ||
+ | \, \\ | ||
+ | \displaystyle \frac{\partial N_1}{\partial y} & | ||
+ | \displaystyle \frac{\partial N_2}{\partial y} & | ||
+ | \displaystyle \frac{\partial N_3}{\partial y} | ||
+ | \end{bmatrix} | ||
+ | </math> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
::<math>\oint_{\Gamma_{\infty}^{(e)}} \mathbf{N^T} \alpha \mathbf{N} \partial \Gamma_{\infty}^{(e)}</math> | ::<math>\oint_{\Gamma_{\infty}^{(e)}} \mathbf{N^T} \alpha \mathbf{N} \partial \Gamma_{\infty}^{(e)}</math> |
Revision as of 16:37, 12 November 2009
The 2D Electrostatic Poisson's equation given by the governing PDE and its boundary conditions:
can be written as (see the General formulation for Electrostatic Problems):
with (n is the number of nodes of the element):
2D formulation for Triangular Elements
After applying the numerical integration for triangular elements by using the natural coordinates, we obtain:
Stiffness Matrix K(e)