2D formulation for Electrostatic Problems
From KratosWiki
(Difference between revisions)
(→Stiffness Matrix K<sup>(e)</sup>) |
(→2D formulation for Triangular Elements) |
||
Line 144: | Line 144: | ||
a_3 | a_3 | ||
\end{bmatrix} | \end{bmatrix} | ||
− | + | </math> | |
+ | |||
+ | ::<math> | ||
\mathbf{B}= | \mathbf{B}= | ||
\begin{bmatrix} | \begin{bmatrix} | ||
Line 154: | Line 156: | ||
\displaystyle \frac{\partial N_2}{\partial y} & | \displaystyle \frac{\partial N_2}{\partial y} & | ||
\displaystyle \frac{\partial N_3}{\partial y} | \displaystyle \frac{\partial N_3}{\partial y} | ||
+ | \end{bmatrix} | ||
+ | = | ||
+ | \frac{1}{|\mathbf{J^{(e)}}|} | ||
+ | \begin{bmatrix} | ||
+ | \displaystyle \frac{\partial y}{\partial \beta} & \displaystyle -\frac{\partial y}{\partial \alpha} \\ | ||
+ | \displaystyle -\frac{\partial x}{\partial \beta} & \displaystyle \frac{\partial x}{\partial \alpha} | ||
+ | \end{bmatrix} | ||
+ | \begin{bmatrix} | ||
+ | \displaystyle \frac{\partial N_1}{\partial \alpha} & | ||
+ | \displaystyle \frac{\partial N_2}{\partial \alpha} & | ||
+ | \displaystyle \frac{\partial N_3}{\partial \alpha}\\ | ||
+ | \, \\ | ||
+ | \displaystyle \frac{\partial N_1}{\partial \beta} & | ||
+ | \displaystyle \frac{\partial N_2}{\partial \beta} & | ||
+ | \displaystyle \frac{\partial N_3}{\partial \beta} | ||
\end{bmatrix} | \end{bmatrix} | ||
</math> | </math> |
Revision as of 16:41, 12 November 2009
The 2D Electrostatic Poisson's equation given by the governing PDE and its boundary conditions:
can be written as (see the General formulation for Electrostatic Problems):
with (n is the number of nodes of the element):
2D formulation for Triangular Elements
After applying the numerical integration for triangular elements by using the natural coordinates, we obtain:
Stiffness Matrix K(e)