2D formulation for Electrostatic Problems
From KratosWiki
(Difference between revisions)
(→Source Vector f<sup>(e)</sup>) |
(→Source Vector f<sup>(e)</sup>) |
||
Line 409: | Line 409: | ||
::::<math>p=2 \qquad N=\left [ 0 \quad \frac{1}{2} \quad \frac{1}{2}\right ] \qquad W_2=\frac{1}{6}\,</math> | ::::<math>p=2 \qquad N=\left [ 0 \quad \frac{1}{2} \quad \frac{1}{2}\right ] \qquad W_2=\frac{1}{6}\,</math> | ||
::::<math>p=3 \qquad N=\left [ \frac{1}{2} \quad 0 \quad \frac{1}{2}\right ] \qquad W_3=\frac{1}{6}\,</math> | ::::<math>p=3 \qquad N=\left [ \frac{1}{2} \quad 0 \quad \frac{1}{2}\right ] \qquad W_3=\frac{1}{6}\,</math> | ||
+ | |||
::::<math> | ::::<math> | ||
\int_{\Omega^{(e)}} \mathbf{N^T} \rho_S \partial \Omega^{(e)} | \int_{\Omega^{(e)}} \mathbf{N^T} \rho_S \partial \Omega^{(e)} | ||
= 2 A^{(e)} \left { \left [ \frac{1}{2} \quad \frac{1}{2} \quad 0\right ]^T | = 2 A^{(e)} \left { \left [ \frac{1}{2} \quad \frac{1}{2} \quad 0\right ]^T | ||
− | + [ 0 \quad \frac{1}{2} \quad \frac{1}{2} \right ]^T | + | + \left [ 0 \quad \frac{1}{2} \quad \frac{1}{2} \right ]^T |
− | + [ \frac{1}{2} \quad 0 \quad \frac{1}{2} \right ]^T | + | + \left [ \frac{1}{2} \quad 0 \quad \frac{1}{2} \right ]^T |
\right } \frac{1}{6} \rho_S | \right } \frac{1}{6} \rho_S | ||
= A^{(e)} \frac{\rho_S}{3} \left [ 1 \quad 1 \quad 1 \right ]^T | = A^{(e)} \frac{\rho_S}{3} \left [ 1 \quad 1 \quad 1 \right ]^T |
Revision as of 10:46, 27 November 2009
The 2D Electrostatic Poisson's equation given by the governing PDE and its boundary conditions:
can be written as (see the General formulation for Electrostatic Problems):
with (n is the number of nodes of the element):
2D formulation for Triangular Elements
After applying the numerical integration for triangular elements by using the natural coordinates, we obtain:
Stiffness Matrix K(e)
Source Vector f(e)
- Linear case (np=1 integration point):
- Quadratic case (np=3 integration points):
- Failed to parse (syntax error): \int_{\Omega^{(e)}} \mathbf{N^T} \rho_S \partial \Omega^{(e)} = 2 A^{(e)} \left { \left [ \frac{1}{2} \quad \frac{1}{2} \quad 0\right ]^T + \left [ 0 \quad \frac{1}{2} \quad \frac{1}{2} \right ]^T + \left [ \frac{1}{2} \quad 0 \quad \frac{1}{2} \right ]^T \right } \frac{1}{6} \rho_S = A^{(e)} \frac{\rho_S}{3} \left [ 1 \quad 1 \quad 1 \right ]^T