2D formulation for Electrostatic Problems
From KratosWiki
(Difference between revisions)
(→Source Vector f<sup>(e)</sup>) |
|||
(84 intermediate revisions by one user not shown) | |||
Line 1: | Line 1: | ||
− | The Electrostatic Poisson's equation given by the governing PDE and its boundary conditions: | + | The 2D Electrostatic Poisson's equation given by the governing PDE and its boundary conditions: |
− | :<math>\left[ \frac{\partial}{\partial x}\cdot \left( \varepsilon_{x} \cdot \frac{\partial}{\partial x}\right) + \frac{\partial}{\partial y}\cdot \left(\varepsilon_{y} \cdot \frac{\partial}{\partial y} \right) \right] | + | ::<math> A(V) = \left[ \frac{\partial}{\partial x}\cdot \left( \varepsilon_{x} \cdot \frac{\partial}{\partial x}\right) + \frac{\partial}{\partial y}\cdot \left(\varepsilon_{y} \cdot \frac{\partial}{\partial y} \right) \right]V(x,y) + \rho_S = 0 ~~ in ~ \Omega </math> |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
Line 12: | Line 8: | ||
\begin{cases} | \begin{cases} | ||
\left . V - \bar V = 0 \right |_{\Gamma_{V}} & in ~ \Gamma_{\varphi} \\ | \left . V - \bar V = 0 \right |_{\Gamma_{V}} & in ~ \Gamma_{\varphi} \\ | ||
+ | \, \\ | ||
\left . \hat n \vec{D} - \bar D_n = 0 \right |_{\Gamma_{q}} & in ~ \Gamma_{q} \\ | \left . \hat n \vec{D} - \bar D_n = 0 \right |_{\Gamma_{q}} & in ~ \Gamma_{q} \\ | ||
− | \left . \frac{\partial V}{\partial r} \right |_{\Gamma_{\infty}} \approx - \frac{V}{r} & in ~ \Gamma_{\infty} | + | \, \\ |
+ | \left . \displaystyle \frac{\partial V}{\partial r} \right |_{\Gamma_{\infty}} | ||
+ | \approx \displaystyle - \frac{V}{r^{exp}} & in ~ \Gamma_{\infty} | ||
\end{cases} | \end{cases} | ||
</math> | </math> | ||
− | + | can be written as (see the [[General_formulation_for_Electrostatic_Problems | General formulation for Electrostatic Problems]]): | |
::<math> | ::<math> | ||
{ | { | ||
− | \int_{\Omega} | + | \int_{\Omega} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} \mathbf{a} \partial \Omega + |
− | + | \oint_{\Gamma_{\infty}} \mathbf{N^T} \alpha \mathbf{N} \mathbf{a} \partial \Gamma_{\infty} = | |
+ | \int_{\Omega} \mathbf{N^T} \rho_S \partial \Omega - | ||
+ | \oint_{\Gamma_q} \mathbf{N^T} \bar D_n \partial \Gamma_q - | ||
+ | \oint_{\Gamma_V} \mathbf{n^T} \mathbf{N^T} \mathbf{q_n} \partial \Gamma_V | ||
} | } | ||
</math> | </math> | ||
+ | ::<math>\mathbf{K} \mathbf{a} \,= \mathbf{f}</math> | ||
− | |||
− | ::<math> | + | ::<math>\mathbf{K}^{(e)}= |
+ | \int_{\Omega^{(e)}} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} \partial \Omega^{(e)} + | ||
+ | \oint_{\Gamma_{\infty}^{(e)}} \mathbf{N^T} \alpha \mathbf{N} \partial \Gamma_{\infty}^{(e)} | ||
+ | </math> | ||
− | ::<math>\ | + | ::<math>\mathbf{f}^{(e)}= |
+ | \int_{\Omega^{(e)}} \mathbf{N^T} \rho_S \partial \Omega^{(e)} - | ||
+ | \oint_{\Gamma_q^{(e)}} \mathbf{N^T} \bar D_n \partial \Gamma_q^{(e)} - | ||
+ | \oint_{\Gamma_V^{(e)}} \mathbf{n^T} \mathbf{N^T} \mathbf{q_n} \partial \Gamma_V^{(e)} | ||
+ | </math> | ||
− | |||
− | + | with ('''''n''''' is the number of nodes of the element): | |
− | ::<math> V (x,y | + | ::<math> V (x,y) \cong \hat V (x,y) = \sum_{i=0}^n N_i (x,y) a_i = \mathbf{N}^{(e)} · \mathbf{a}^{(e)}</math> |
− | + | ::<math>\mathbf{N^{(e)}} = | |
+ | \begin{bmatrix} | ||
+ | N_1 \\ | ||
+ | \, \\ | ||
+ | N_2 \\ | ||
+ | \, \\ | ||
+ | \vdots \\ | ||
+ | \, \\ | ||
+ | N_n | ||
+ | \end{bmatrix} | ||
+ | \qquad | ||
+ | \mathbf{a^{(e)}} = | ||
+ | \begin{bmatrix} | ||
+ | a_1 \\ | ||
+ | \, \\ | ||
+ | a_2 \\ | ||
+ | \, \\ | ||
+ | \vdots \\ | ||
+ | \, \\ | ||
+ | a_n | ||
+ | \end{bmatrix} | ||
+ | \qquad | ||
+ | \mathbf{B}= \left [ \mathbf{B_1 B_2 ... B_n} \right ] | ||
+ | \qquad | ||
+ | \mathbf{B_i}= | ||
+ | \begin{bmatrix} | ||
+ | \displaystyle \frac{\partial N_i}{\partial x} \\ | ||
+ | \, \\ | ||
+ | \displaystyle \frac{\partial N_i}{\partial y} | ||
+ | \end{bmatrix} | ||
+ | \qquad | ||
+ | \mathbf{\varepsilon}= | ||
+ | \begin{bmatrix} | ||
+ | \varepsilon_x & 0 \\ | ||
+ | \, \\ | ||
+ | 0 & \varepsilon_y | ||
+ | \end{bmatrix} | ||
+ | </math> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | ::<math>\alpha = \frac{1}{|r-r_0|^{exp}} \qquad with \quad exp=0.5, 1, 2...</math> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | == 2D formulation for Triangular Elements == | |
− | : | + | After applying the [[Numerical_Integration#Numerical_Integration_for_Isoparametric_Triangular_Domains | numerical integration for triangular elements]] by using the [[Two-dimensional_Shape_Functions#Natural_Coordinates | natural coordinates]], we obtain: |
− | ::<math>\ | + | ::<math> |
+ | \mathbf{N^{(e)}} = | ||
+ | \begin{bmatrix} | ||
+ | N_1 & N_2 & N_3 | ||
+ | \end{bmatrix} | ||
+ | = | ||
+ | \begin{bmatrix} | ||
+ | L_1 & L_2 & L_3 | ||
+ | \end{bmatrix} | ||
+ | = | ||
+ | \begin{bmatrix} | ||
+ | (1-\alpha-\beta) & \alpha & \beta | ||
+ | \end{bmatrix} | ||
+ | \qquad | ||
+ | \mathbf{a^{(e)}} = | ||
+ | \begin{bmatrix} | ||
+ | a_1 \\ | ||
+ | \, \\ | ||
+ | a_2 \\ | ||
+ | \, \\ | ||
+ | a_3 | ||
+ | \end{bmatrix} | ||
+ | </math> | ||
− | + | ::<math> | |
+ | \frac{\partial N_1}{\partial \alpha}=-1 \qquad | ||
+ | \frac{\partial N_2}{\partial \alpha}=1 \qquad | ||
+ | \frac{\partial N_3}{\partial \alpha}=0 \qquad | ||
+ | \frac{\partial N_1}{\partial \beta}=-1 \qquad | ||
+ | \frac{\partial N_2}{\partial \beta}=0 \qquad | ||
+ | \frac{\partial N_3}{\partial \beta}=1 | ||
+ | </math> | ||
− | ::<math>\mathbf{ | + | ::[[Image:NaturalCoordinates 2.jpg|300px]] |
+ | |||
+ | |||
+ | ::<math> | ||
+ | x = N_1 x_1 + N_2 x_2 + N_3 x_3 = ( 1 - \alpha - \beta) x_1 + \alpha x_2 + \beta x_3 \, | ||
+ | </math> | ||
+ | |||
+ | |||
+ | ::<math> | ||
+ | y = N_1 y_1 + N_2 y_2 + N_3 y_3 = ( 1 - \alpha - \beta) y_1 + \alpha y_2 + \beta y_3 \, | ||
+ | </math> | ||
+ | |||
+ | |||
+ | ::<math>\mathbf{J^{(e)}} = | ||
+ | \begin{bmatrix} | ||
+ | \displaystyle \frac{\partial x}{\partial \alpha} & \displaystyle \frac{\partial y}{\partial \alpha} \\ \quad \\ | ||
+ | \displaystyle \frac{\partial x}{\partial \beta} & \displaystyle \frac{\partial y}{\partial \beta} | ||
+ | \end{bmatrix} | ||
+ | = | ||
+ | \begin{bmatrix} | ||
+ | - x_1 + x_2 & - y_1 + y_2 \\ | ||
+ | - x_1 + x_3 & - y_1 + y_3 | ||
+ | \end{bmatrix} | ||
+ | \qquad | ||
+ | \mathbf{|J^{(e)}|} = 2 A^{(e)} | ||
+ | </math> | ||
− | + | ::<math>\mathbf{B(\alpha,\beta)}=\mathbf{J^{(e)}} \mathbf{B(x,y)} \qquad \mathbf{B(x,y)}= \mathbf{[J^{(e)}]^{-1}} \mathbf{B(\alpha,\beta)}</math> | |
− | ::<math>\mathbf{ | + | ::<math> |
+ | \mathbf{B}= | ||
\begin{bmatrix} | \begin{bmatrix} | ||
− | \frac{\partial | + | \displaystyle \frac{\partial N_1}{\partial x} & |
+ | \displaystyle \frac{\partial N_2}{\partial x} & | ||
+ | \displaystyle \frac{\partial N_3}{\partial x}\\ | ||
\, \\ | \, \\ | ||
− | \frac{\partial | + | \displaystyle \frac{\partial N_1}{\partial y} & |
+ | \displaystyle \frac{\partial N_2}{\partial y} & | ||
+ | \displaystyle \frac{\partial N_3}{\partial y} | ||
+ | \end{bmatrix} | ||
+ | = | ||
+ | \frac{1}{|\mathbf{J^{(e)}}|} | ||
+ | \begin{bmatrix} | ||
+ | \displaystyle \frac{\partial y}{\partial \beta} & \displaystyle -\frac{\partial y}{\partial \alpha} \\ | ||
+ | \displaystyle -\frac{\partial x}{\partial \beta} & \displaystyle \frac{\partial x}{\partial \alpha} | ||
+ | \end{bmatrix} | ||
+ | \begin{bmatrix} | ||
+ | \displaystyle \frac{\partial N_1}{\partial \alpha} & | ||
+ | \displaystyle \frac{\partial N_2}{\partial \alpha} & | ||
+ | \displaystyle \frac{\partial N_3}{\partial \alpha}\\ | ||
\, \\ | \, \\ | ||
− | \frac{\partial | + | \displaystyle \frac{\partial N_1}{\partial \beta} & |
+ | \displaystyle \frac{\partial N_2}{\partial \beta} & | ||
+ | \displaystyle \frac{\partial N_3}{\partial \beta} | ||
\end{bmatrix} | \end{bmatrix} | ||
</math> | </math> | ||
− | + | ::<math> | |
+ | \mathbf{B} | ||
+ | = | ||
+ | \frac{1}{2 A^{(e)}} | ||
+ | \begin{bmatrix} | ||
+ | - y_1 + y_3 & - y_2 + y_1 \\ | ||
+ | - x_3 + x_1 & - x_1 + x_2 | ||
+ | \end{bmatrix} | ||
+ | \begin{bmatrix} | ||
+ | -1 & 1 & 0 \\ | ||
+ | -1 & 0 & 1 | ||
+ | \end{bmatrix} | ||
+ | = | ||
+ | \frac{1}{2 A^{(e)}} | ||
+ | \begin{bmatrix} | ||
+ | - y_3 + y_2 & - y_1 + y_3 & - y_2 + y_1 \\ | ||
+ | x_3 - x_2 & - x_3 + x_1 & - x_1 + x_2 | ||
+ | \end{bmatrix} | ||
+ | </math> | ||
− | |||
+ | === Stiffness Matrix K<sup>(e)</sup> === | ||
+ | ::<math> | ||
+ | \int_{\Omega^{(e)}} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} \partial \Omega^{(e)}= | ||
+ | \int \int_{A^{(e)}} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} d x d y = | ||
+ | \int_0^1 \int_0^{1-\beta} |\mathbf{J^{(e)}}| \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} d \alpha d \beta = | ||
+ | </math> | ||
− | + | ::<math> | |
+ | = \qquad \qquad |\mathbf{J^{(e)}}| \sum_{p=1}^{n_p} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} W_p = | ||
+ | |\mathbf{J^{(e)}}| \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} \sum_{p=1}^{n_p} W_p = | ||
+ | \frac{|\mathbf{J^{(e)}}|}{2} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} | ||
+ | </math> | ||
− | ::<math> | + | ::::<math>\mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} = |
− | + | \begin{bmatrix} | |
− | + | \displaystyle \frac{\partial N_1}{\partial x} & | |
− | + | \displaystyle \frac{\partial N_1}{\partial y} \\ | |
− | + | \, \\ | |
− | + | \displaystyle \frac{\partial N_2}{\partial x} & | |
− | + | \displaystyle \frac{\partial N_2}{\partial y} \\ | |
− | + | \, \\ | |
− | + | \displaystyle \frac{\partial N_3}{\partial x} & | |
+ | \displaystyle \frac{\partial N_3}{\partial y} | ||
+ | \end{bmatrix} | ||
+ | \begin{bmatrix} | ||
+ | \displaystyle \varepsilon_x & 0 \\ | ||
+ | \, \\ | ||
+ | 0 & \displaystyle \varepsilon_y | ||
+ | \end{bmatrix} | ||
+ | \begin{bmatrix} | ||
+ | \displaystyle \frac{\partial N_1}{\partial x} & | ||
+ | \displaystyle \frac{\partial N_2}{\partial x} & | ||
+ | \displaystyle \frac{\partial N_3}{\partial x}\\ | ||
+ | \, \\ | ||
+ | \displaystyle \frac{\partial N_1}{\partial y} & | ||
+ | \displaystyle \frac{\partial N_2}{\partial y} & | ||
+ | \displaystyle \frac{\partial N_3}{\partial y} | ||
+ | \end{bmatrix} | ||
+ | </math> | ||
+ | ::::<math>\mathbf{B(x,y)^T} \mathbf{\varepsilon} \mathbf{B(x,y)} = | ||
+ | \mathbf{B(\alpha,\beta)^T} \mathbf{[[J^{(e)}]^{-1}]^T} \mathbf{\varepsilon} \mathbf{[J^{(e)}]^{-1}} \mathbf{B(\alpha,\beta)}</math> | ||
− | |||
+ | ::::<math>\mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} = | ||
+ | \frac{1}{|\mathbf{J^{(e)}}|^2} | ||
+ | \begin{bmatrix} | ||
+ | \displaystyle \frac{\partial N_1}{\partial \alpha} & | ||
+ | \displaystyle \frac{\partial N_1}{\partial \beta} \\ | ||
+ | \, \\ | ||
+ | \displaystyle \frac{\partial N_2}{\partial \alpha} & | ||
+ | \displaystyle \frac{\partial N_2}{\partial \beta} \\ | ||
+ | \, \\ | ||
+ | \displaystyle \frac{\partial N_3}{\partial \alpha} & | ||
+ | \displaystyle \frac{\partial N_3}{\partial \beta} | ||
+ | \end{bmatrix} | ||
+ | \begin{bmatrix} | ||
+ | \displaystyle \frac{\partial y}{\partial \beta} & \displaystyle -\frac{\partial x}{\partial \beta} \\ | ||
+ | \displaystyle -\frac{\partial y}{\partial \alpha} & \displaystyle \frac{\partial x}{\partial \alpha} | ||
+ | \end{bmatrix} | ||
+ | \begin{bmatrix} | ||
+ | \displaystyle \varepsilon_x & 0 \\ | ||
+ | \, \\ | ||
+ | 0 & \displaystyle \varepsilon_y | ||
+ | \end{bmatrix} | ||
+ | \begin{bmatrix} | ||
+ | \displaystyle \frac{\partial y}{\partial \beta} & \displaystyle -\frac{\partial y}{\partial \alpha} \\ | ||
+ | \displaystyle -\frac{\partial x}{\partial \beta} & \displaystyle \frac{\partial x}{\partial \alpha} | ||
+ | \end{bmatrix} | ||
+ | \begin{bmatrix} | ||
+ | \displaystyle \frac{\partial N_1}{\partial \alpha} & | ||
+ | \displaystyle \frac{\partial N_2}{\partial \alpha} & | ||
+ | \displaystyle \frac{\partial N_3}{\partial \alpha}\\ | ||
+ | \, \\ | ||
+ | \displaystyle \frac{\partial N_1}{\partial \beta} & | ||
+ | \displaystyle \frac{\partial N_2}{\partial \beta} & | ||
+ | \displaystyle \frac{\partial N_3}{\partial \beta} | ||
+ | \end{bmatrix} | ||
+ | </math> | ||
− | |||
+ | ::::<math>\mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} = | ||
+ | \frac{1}{(2 A^{(e)})^2} | ||
+ | \begin{bmatrix} | ||
+ | -1 & -1 \\ | ||
+ | 1 & 0 \\ | ||
+ | 0 & 1 | ||
+ | \end{bmatrix} | ||
+ | \begin{bmatrix} | ||
+ | - y_1 + y_3 & - x_3 + x_1 \\ | ||
+ | - y_2 + y_1 & - x_1 + x_2 | ||
+ | \end{bmatrix} | ||
+ | \begin{bmatrix} | ||
+ | \displaystyle \varepsilon_x & 0 \\ | ||
+ | \, \\ | ||
+ | 0 & \displaystyle \varepsilon_y | ||
+ | \end{bmatrix} | ||
+ | \begin{bmatrix} | ||
+ | - y_1 + y_3 & - y_2 + y_1 \\ | ||
+ | - x_3 + x_1 & - x_1 + x_2 | ||
+ | \end{bmatrix} | ||
+ | \begin{bmatrix} | ||
+ | -1 & 1 & 0 \\ | ||
+ | -1 & 0 & 1 | ||
+ | \end{bmatrix} | ||
+ | </math> | ||
− | ::<math> | + | |
− | + | ||
− | + | ::::<math>\mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} = | |
+ | \frac{1}{(2 A^{(e)})^2} | ||
+ | \begin{bmatrix} | ||
+ | - y_3 + y_2 & x_3 + x_2 \\ | ||
+ | - y_1 + y_3 & - x_3 + x_1 \\ | ||
+ | - y_2 + y_1 & - x_1 + x_2 | ||
+ | \end{bmatrix} | ||
+ | \begin{bmatrix} | ||
+ | \displaystyle \varepsilon_x & 0 \\ | ||
+ | \, \\ | ||
+ | 0 & \displaystyle \varepsilon_y | ||
+ | \end{bmatrix} | ||
+ | \begin{bmatrix} | ||
+ | - y_3 + y_2 & - y_1 + y_3 & - y_2 + y_1 \\ | ||
+ | x_3 + x_2 & - x_3 + x_1 & - x_1 + x_2 | ||
+ | \end{bmatrix} | ||
</math> | </math> | ||
− | ::<math>\mathbf{ | + | |
− | + | ::::<math> | |
− | \oint_{\Gamma_q^{(e)}} \mathbf{N^T} \bar D_n \partial \Gamma_q^{(e)} | + | \int_{\Omega^{(e)}} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} \partial \Omega^{(e)}= |
− | + | A^{(e)} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} = | |
− | + | \frac{1}{4 A^{(e)}} | |
+ | \begin{bmatrix} | ||
+ | - y_3 + y_2 & x_3 + x_2 \\ | ||
+ | - y_1 + y_3 & - x_3 + x_1 \\ | ||
+ | - y_2 + y_1 & - x_1 + x_2 | ||
+ | \end{bmatrix} | ||
+ | \begin{bmatrix} | ||
+ | \displaystyle \varepsilon_x & 0 \\ | ||
+ | \, \\ | ||
+ | 0 & \displaystyle \varepsilon_y | ||
+ | \end{bmatrix} | ||
+ | \begin{bmatrix} | ||
+ | - y_3 + y_2 & - y_1 + y_3 & - y_2 + y_1 \\ | ||
+ | x_3 + x_2 & - x_3 + x_1 & - x_1 + x_2 | ||
+ | \end{bmatrix} | ||
+ | </math> | ||
+ | |||
+ | |||
+ | ::<math>\oint_{\Gamma_{\infty}^{(e)}} \mathbf{N^T} \alpha \mathbf{N} \partial \Gamma_{\infty}^{(e)}</math> | ||
+ | |||
+ | === Source Vector f<sup>(e)</sup> === | ||
+ | |||
+ | ::<math> | ||
+ | \int_{\Omega^{(e)}} \mathbf{N^T} \rho_S \partial \Omega^{(e)} = | ||
+ | \int \int_{A^{(e)}} \mathbf{N^T} \rho_S d x d y = | ||
+ | \int_0^1 \int_0^{1-\beta} |\mathbf{J^{(e)}}| \mathbf{N^T} \rho_S d \alpha d \beta = | ||
+ | |\mathbf{J^{(e)}}| \sum_{p=1}^{n_p} \mathbf{N^T} \rho_S W_p = | ||
+ | </math> | ||
+ | |||
+ | |||
+ | :::'''Linear case''' ('''n<sub>p</sub>'''=1 integration point): | ||
+ | |||
+ | |||
+ | ::::<math>N=\left [ \frac{1}{3} \quad \frac{1}{3} \quad \frac{1}{3}\right ] \qquad W_i=\frac{1}{2}\,</math> | ||
+ | |||
+ | ::::<math> | ||
+ | \int_{\Omega^{(e)}} \mathbf{N^T} \rho_S \partial \Omega^{(e)} | ||
+ | = 2 A^{(e)} \left [ \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6}\right ]^T \rho_S | ||
+ | = A^{(e)} \frac{\rho_S}{3} \left [ 1 \quad 1 \quad 1 \right ]^T | ||
+ | </math> | ||
+ | |||
+ | |||
+ | |||
+ | :::'''Quadratic case''' ('''n<sub>p</sub>'''=3 integration points): | ||
+ | |||
+ | |||
+ | ::::<math>p=1 \qquad N=\left [ \frac{1}{2} \quad \frac{1}{2} \quad 0\right ] \qquad W_1=\frac{1}{6}\,</math> | ||
+ | ::::<math>p=2 \qquad N=\left [ 0 \quad \frac{1}{2} \quad \frac{1}{2}\right ] \qquad W_2=\frac{1}{6}\,</math> | ||
+ | ::::<math>p=3 \qquad N=\left [ \frac{1}{2} \quad 0 \quad \frac{1}{2}\right ] \qquad W_3=\frac{1}{6}\,</math> | ||
+ | |||
+ | |||
+ | ::::<math> | ||
+ | \int_{\Omega^{(e)}} \mathbf{N^T} \rho_S \partial \Omega^{(e)} | ||
+ | = 2 A^{(e)} \left ( \left [ \frac{1}{2} \quad \frac{1}{2} \quad 0 \right ]^T | ||
+ | + \left [ 0 \quad \frac{1}{2} \quad \frac{1}{2} \right ]^T | ||
+ | + \left [ \frac{1}{2} \quad 0 \quad \frac{1}{2} \right ]^T \right ) | ||
+ | \frac{1}{6} \rho_S | ||
+ | = A^{(e)} \frac{\rho_S}{3} \left [ 1 \quad 1 \quad 1 \right ]^T | ||
+ | </math> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ::<math>\oint_{\Gamma_q^{(e)}} \mathbf{N^T} \bar D_n \partial \Gamma_q^{(e)}</math> | ||
+ | |||
+ | ::<math>\oint_{\Gamma_V^{(e)}} \mathbf{n^T} \mathbf{N^T} \mathbf{q_n} \partial \Gamma_V^{(e)}</math> | ||
Line 163: | Line 450: | ||
[[Category: Electrostatic Application]] | [[Category: Electrostatic Application]] | ||
− | [[Category: Theory]] | + | [[Category: Electrostatic Theory]] |
Latest revision as of 10:47, 27 November 2009
The 2D Electrostatic Poisson's equation given by the governing PDE and its boundary conditions:
can be written as (see the General formulation for Electrostatic Problems):
with (n is the number of nodes of the element):
2D formulation for Triangular Elements
After applying the numerical integration for triangular elements by using the natural coordinates, we obtain:
Stiffness Matrix K(e)
Source Vector f(e)
- Linear case (np=1 integration point):
- Quadratic case (np=3 integration points):