2D formulation for Electrostatic Problems
From KratosWiki
(Difference between revisions)
(→2D formulation for Triangular Elements) |
(→Source Vector f<sup>(e)</sup>) |
||
(23 intermediate revisions by one user not shown) | |||
Line 112: | Line 112: | ||
\mathbf{N^{(e)}} = | \mathbf{N^{(e)}} = | ||
\begin{bmatrix} | \begin{bmatrix} | ||
− | N_1 | + | N_1 & N_2 & N_3 |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
\end{bmatrix} | \end{bmatrix} | ||
= | = | ||
\begin{bmatrix} | \begin{bmatrix} | ||
− | L_1 | + | L_1 & L_2 & L_3 |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
\end{bmatrix} | \end{bmatrix} | ||
= | = | ||
\begin{bmatrix} | \begin{bmatrix} | ||
− | 1-\alpha-\beta | + | (1-\alpha-\beta) & \alpha & \beta |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
\end{bmatrix} | \end{bmatrix} | ||
− | |||
\qquad | \qquad | ||
\mathbf{a^{(e)}} = | \mathbf{a^{(e)}} = | ||
Line 319: | Line 306: | ||
\displaystyle \frac{\partial N_2}{\partial \beta} & | \displaystyle \frac{\partial N_2}{\partial \beta} & | ||
\displaystyle \frac{\partial N_3}{\partial \beta} | \displaystyle \frac{\partial N_3}{\partial \beta} | ||
+ | \end{bmatrix} | ||
+ | </math> | ||
+ | |||
+ | |||
+ | ::::<math>\mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} = | ||
+ | \frac{1}{(2 A^{(e)})^2} | ||
+ | \begin{bmatrix} | ||
+ | -1 & -1 \\ | ||
+ | 1 & 0 \\ | ||
+ | 0 & 1 | ||
+ | \end{bmatrix} | ||
+ | \begin{bmatrix} | ||
+ | - y_1 + y_3 & - x_3 + x_1 \\ | ||
+ | - y_2 + y_1 & - x_1 + x_2 | ||
+ | \end{bmatrix} | ||
+ | \begin{bmatrix} | ||
+ | \displaystyle \varepsilon_x & 0 \\ | ||
+ | \, \\ | ||
+ | 0 & \displaystyle \varepsilon_y | ||
+ | \end{bmatrix} | ||
+ | \begin{bmatrix} | ||
+ | - y_1 + y_3 & - y_2 + y_1 \\ | ||
+ | - x_3 + x_1 & - x_1 + x_2 | ||
+ | \end{bmatrix} | ||
+ | \begin{bmatrix} | ||
+ | -1 & 1 & 0 \\ | ||
+ | -1 & 0 & 1 | ||
+ | \end{bmatrix} | ||
+ | </math> | ||
+ | |||
+ | |||
+ | |||
+ | ::::<math>\mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} = | ||
+ | \frac{1}{(2 A^{(e)})^2} | ||
+ | \begin{bmatrix} | ||
+ | - y_3 + y_2 & x_3 + x_2 \\ | ||
+ | - y_1 + y_3 & - x_3 + x_1 \\ | ||
+ | - y_2 + y_1 & - x_1 + x_2 | ||
+ | \end{bmatrix} | ||
+ | \begin{bmatrix} | ||
+ | \displaystyle \varepsilon_x & 0 \\ | ||
+ | \, \\ | ||
+ | 0 & \displaystyle \varepsilon_y | ||
+ | \end{bmatrix} | ||
+ | \begin{bmatrix} | ||
+ | - y_3 + y_2 & - y_1 + y_3 & - y_2 + y_1 \\ | ||
+ | x_3 + x_2 & - x_3 + x_1 & - x_1 + x_2 | ||
+ | \end{bmatrix} | ||
+ | </math> | ||
+ | |||
+ | |||
+ | ::::<math> | ||
+ | \int_{\Omega^{(e)}} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} \partial \Omega^{(e)}= | ||
+ | A^{(e)} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} = | ||
+ | \frac{1}{4 A^{(e)}} | ||
+ | \begin{bmatrix} | ||
+ | - y_3 + y_2 & x_3 + x_2 \\ | ||
+ | - y_1 + y_3 & - x_3 + x_1 \\ | ||
+ | - y_2 + y_1 & - x_1 + x_2 | ||
+ | \end{bmatrix} | ||
+ | \begin{bmatrix} | ||
+ | \displaystyle \varepsilon_x & 0 \\ | ||
+ | \, \\ | ||
+ | 0 & \displaystyle \varepsilon_y | ||
+ | \end{bmatrix} | ||
+ | \begin{bmatrix} | ||
+ | - y_3 + y_2 & - y_1 + y_3 & - y_2 + y_1 \\ | ||
+ | x_3 + x_2 & - x_3 + x_1 & - x_1 + x_2 | ||
\end{bmatrix} | \end{bmatrix} | ||
</math> | </math> | ||
Line 327: | Line 382: | ||
=== Source Vector f<sup>(e)</sup> === | === Source Vector f<sup>(e)</sup> === | ||
− | ::<math>\int_{\Omega^{(e)}} \mathbf{N^T} \rho_S \partial \Omega^{(e)}</math> | + | ::<math> |
+ | \int_{\Omega^{(e)}} \mathbf{N^T} \rho_S \partial \Omega^{(e)} = | ||
+ | \int \int_{A^{(e)}} \mathbf{N^T} \rho_S d x d y = | ||
+ | \int_0^1 \int_0^{1-\beta} |\mathbf{J^{(e)}}| \mathbf{N^T} \rho_S d \alpha d \beta = | ||
+ | |\mathbf{J^{(e)}}| \sum_{p=1}^{n_p} \mathbf{N^T} \rho_S W_p = | ||
+ | </math> | ||
+ | |||
+ | |||
+ | :::'''Linear case''' ('''n<sub>p</sub>'''=1 integration point): | ||
+ | |||
+ | |||
+ | ::::<math>N=\left [ \frac{1}{3} \quad \frac{1}{3} \quad \frac{1}{3}\right ] \qquad W_i=\frac{1}{2}\,</math> | ||
+ | |||
+ | ::::<math> | ||
+ | \int_{\Omega^{(e)}} \mathbf{N^T} \rho_S \partial \Omega^{(e)} | ||
+ | = 2 A^{(e)} \left [ \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6}\right ]^T \rho_S | ||
+ | = A^{(e)} \frac{\rho_S}{3} \left [ 1 \quad 1 \quad 1 \right ]^T | ||
+ | </math> | ||
+ | |||
+ | |||
+ | |||
+ | :::'''Quadratic case''' ('''n<sub>p</sub>'''=3 integration points): | ||
+ | |||
+ | |||
+ | ::::<math>p=1 \qquad N=\left [ \frac{1}{2} \quad \frac{1}{2} \quad 0\right ] \qquad W_1=\frac{1}{6}\,</math> | ||
+ | ::::<math>p=2 \qquad N=\left [ 0 \quad \frac{1}{2} \quad \frac{1}{2}\right ] \qquad W_2=\frac{1}{6}\,</math> | ||
+ | ::::<math>p=3 \qquad N=\left [ \frac{1}{2} \quad 0 \quad \frac{1}{2}\right ] \qquad W_3=\frac{1}{6}\,</math> | ||
+ | |||
+ | |||
+ | ::::<math> | ||
+ | \int_{\Omega^{(e)}} \mathbf{N^T} \rho_S \partial \Omega^{(e)} | ||
+ | = 2 A^{(e)} \left ( \left [ \frac{1}{2} \quad \frac{1}{2} \quad 0 \right ]^T | ||
+ | + \left [ 0 \quad \frac{1}{2} \quad \frac{1}{2} \right ]^T | ||
+ | + \left [ \frac{1}{2} \quad 0 \quad \frac{1}{2} \right ]^T \right ) | ||
+ | \frac{1}{6} \rho_S | ||
+ | = A^{(e)} \frac{\rho_S}{3} \left [ 1 \quad 1 \quad 1 \right ]^T | ||
+ | </math> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
::<math>\oint_{\Gamma_q^{(e)}} \mathbf{N^T} \bar D_n \partial \Gamma_q^{(e)}</math> | ::<math>\oint_{\Gamma_q^{(e)}} \mathbf{N^T} \bar D_n \partial \Gamma_q^{(e)}</math> |
Latest revision as of 10:47, 27 November 2009
The 2D Electrostatic Poisson's equation given by the governing PDE and its boundary conditions:
can be written as (see the General formulation for Electrostatic Problems):
with (n is the number of nodes of the element):
2D formulation for Triangular Elements
After applying the numerical integration for triangular elements by using the natural coordinates, we obtain:
Stiffness Matrix K(e)
Source Vector f(e)
- Linear case (np=1 integration point):
- Quadratic case (np=3 integration points):