2D formulation for Electrostatic Problems
From KratosWiki
(Difference between revisions)
(→Source Vector f<sup>(e)</sup>) |
(→Source Vector f<sup>(e)</sup>) |
||
(8 intermediate revisions by one user not shown) | |||
Line 357: | Line 357: | ||
− | ::<math> | + | ::::<math> |
\int_{\Omega^{(e)}} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} \partial \Omega^{(e)}= | \int_{\Omega^{(e)}} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} \partial \Omega^{(e)}= | ||
A^{(e)} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} = | A^{(e)} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} = | ||
Line 390: | Line 390: | ||
− | ::Linear case ('''n<sub>p</sub>'''=1 integration point): | + | :::'''Linear case''' ('''n<sub>p</sub>'''=1 integration point): |
− | :::<math>N=\left [ \frac{1}{3} \quad \frac{1}{3} \quad \frac{1}{3}\right ] \qquad W_i=\frac{1}{2}\,</math> | + | ::::<math>N=\left [ \frac{1}{3} \quad \frac{1}{3} \quad \frac{1}{3}\right ] \qquad W_i=\frac{1}{2}\,</math> |
− | ::<math> | + | ::::<math> |
− | \int_{\Omega^{(e)}} \mathbf{N^T} \rho_S \partial \Omega^{(e)} | + | \int_{\Omega^{(e)}} \mathbf{N^T} \rho_S \partial \Omega^{(e)} |
− | = 2 A^{(e)} \left [ \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6}\right ]^T \rho_S | + | = 2 A^{(e)} \left [ \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6}\right ]^T \rho_S |
− | = A^{(e)} | + | = A^{(e)} \frac{\rho_S}{3} \left [ 1 \quad 1 \quad 1 \right ]^T |
</math> | </math> | ||
+ | |||
+ | |||
+ | |||
+ | :::'''Quadratic case''' ('''n<sub>p</sub>'''=3 integration points): | ||
+ | |||
+ | |||
+ | ::::<math>p=1 \qquad N=\left [ \frac{1}{2} \quad \frac{1}{2} \quad 0\right ] \qquad W_1=\frac{1}{6}\,</math> | ||
+ | ::::<math>p=2 \qquad N=\left [ 0 \quad \frac{1}{2} \quad \frac{1}{2}\right ] \qquad W_2=\frac{1}{6}\,</math> | ||
+ | ::::<math>p=3 \qquad N=\left [ \frac{1}{2} \quad 0 \quad \frac{1}{2}\right ] \qquad W_3=\frac{1}{6}\,</math> | ||
+ | |||
+ | |||
+ | ::::<math> | ||
+ | \int_{\Omega^{(e)}} \mathbf{N^T} \rho_S \partial \Omega^{(e)} | ||
+ | = 2 A^{(e)} \left ( \left [ \frac{1}{2} \quad \frac{1}{2} \quad 0 \right ]^T | ||
+ | + \left [ 0 \quad \frac{1}{2} \quad \frac{1}{2} \right ]^T | ||
+ | + \left [ \frac{1}{2} \quad 0 \quad \frac{1}{2} \right ]^T \right ) | ||
+ | \frac{1}{6} \rho_S | ||
+ | = A^{(e)} \frac{\rho_S}{3} \left [ 1 \quad 1 \quad 1 \right ]^T | ||
+ | </math> | ||
+ | |||
+ | |||
+ | |||
Latest revision as of 10:47, 27 November 2009
The 2D Electrostatic Poisson's equation given by the governing PDE and its boundary conditions:
can be written as (see the General formulation for Electrostatic Problems):
with (n is the number of nodes of the element):
2D formulation for Triangular Elements
After applying the numerical integration for triangular elements by using the natural coordinates, we obtain:
Stiffness Matrix K(e)
Source Vector f(e)
- Linear case (np=1 integration point):
- Quadratic case (np=3 integration points):