2D formulation for Electrostatic Problems
From KratosWiki
(Difference between revisions)
(→Stiffness Matrix K<sup>(e)</sup>) |
(→2D formulation for Triangular Elements) |
||
Line 243: | Line 243: | ||
− | + | ::<math>\mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} = | |
+ | \left ( \frac{1}{|\mathbf{J^{(e)}}|} \right )^2 | ||
+ | \begin{bmatrix} | ||
+ | \displaystyle \frac{\partial N_1}{\partial \alpha} & | ||
+ | \displaystyle \frac{\partial N_1}{\partial \beta} \\ | ||
+ | \, \\ | ||
+ | \displaystyle \frac{\partial N_2}{\partial \alpha} & | ||
+ | \displaystyle \frac{\partial N_2}{\partial \beta} \\ | ||
+ | \, \\ | ||
+ | \displaystyle \frac{\partial N_3}{\partial \alpha} & | ||
+ | \displaystyle \frac{\partial N_3}{\partial \beta} | ||
+ | \end{bmatrix} | ||
+ | \begin{bmatrix} | ||
+ | \displaystyle \frac{\partial y}{\partial \beta} & \displaystyle -\frac{\partial x}{\partial \beta} \\ | ||
+ | \displaystyle -\frac{\partial y}{\partial \alpha} & \displaystyle \frac{\partial x}{\partial \alpha} | ||
+ | \end{bmatrix} | ||
+ | \begin{bmatrix} | ||
+ | \displaystyle \varepsilon_x & 0 \\ | ||
+ | \, \\ | ||
+ | 0 & \displaystyle \varepsilon_y | ||
+ | \end{bmatrix} | ||
+ | \begin{bmatrix} | ||
+ | \displaystyle \frac{\partial y}{\partial \beta} & \displaystyle -\frac{\partial y}{\partial \alpha} \\ | ||
+ | \displaystyle -\frac{\partial x}{\partial \beta} & \displaystyle \frac{\partial x}{\partial \alpha} | ||
+ | \end{bmatrix} | ||
+ | \begin{bmatrix} | ||
+ | \displaystyle \frac{\partial N_1}{\partial \alpha} & | ||
+ | \displaystyle \frac{\partial N_2}{\partial \alpha} & | ||
+ | \displaystyle \frac{\partial N_3}{\partial \alpha}\\ | ||
+ | \, \\ | ||
+ | \displaystyle \frac{\partial N_1}{\partial \beta} & | ||
+ | \displaystyle \frac{\partial N_2}{\partial \beta} & | ||
+ | \displaystyle \frac{\partial N_3}{\partial \beta} | ||
+ | \end{bmatrix} | ||
+ | </math> | ||
Revision as of 17:19, 12 November 2009
The 2D Electrostatic Poisson's equation given by the governing PDE and its boundary conditions:
can be written as (see the General formulation for Electrostatic Problems):
with (n is the number of nodes of the element):
2D formulation for Triangular Elements
After applying the numerical integration for triangular elements by using the natural coordinates, we obtain:
Stiffness Matrix K(e)