2D formulation for Electrostatic Problems
From KratosWiki
(Difference between revisions)
(→2D formulation for Triangular Elements) |
(→Source Vector f<sup>(e)</sup>) |
||
Line 388: | Line 388: | ||
|\mathbf{J^{(e)}}| \sum_{p=1}^{n_p} \mathbf{N^T} \rho_S W_p = | |\mathbf{J^{(e)}}| \sum_{p=1}^{n_p} \mathbf{N^T} \rho_S W_p = | ||
</math> | </math> | ||
+ | |||
+ | :Linear case ('''n<sub>p</sub>'''=1 integration point): | ||
+ | |||
+ | ::<math>N=\left [ \frac{1}{3} \frac{1}{3} \frac{1}{3}\right ] \qquad W_i=\frac{1}{2}\,</math> | ||
::<math> | ::<math> | ||
− | + | \int_{\Omega^{(e)}} \mathbf{N^T} \rho_S \partial \Omega^{(e)} = | |
− | \frac{ | + | = 2 A^{(e)} \left [ \frac{1}{6} \frac{1}{6} \frac{1}{6}\right ]^T \rho_S = |
+ | = A^{(e)} \left [ \frac{\rho_S}{3} \frac{\rho_S}{3} \frac{\rho_S}{3}\right ]^T = | ||
</math> | </math> | ||
Revision as of 19:31, 12 November 2009
The 2D Electrostatic Poisson's equation given by the governing PDE and its boundary conditions:
can be written as (see the General formulation for Electrostatic Problems):
with (n is the number of nodes of the element):
2D formulation for Triangular Elements
After applying the numerical integration for triangular elements by using the natural coordinates, we obtain:
Stiffness Matrix K(e)
Source Vector f(e)
- Linear case (np=1 integration point):