2D formulation for Electrostatic Problems
From KratosWiki
(Difference between revisions)
(→Source Vector f<sup>(e)</sup>) |
(→Source Vector f<sup>(e)</sup>) |
||
Line 396: | Line 396: | ||
::::<math> | ::::<math> | ||
− | \int_{\Omega^{(e)}} \mathbf{N^T} \rho_S \partial \Omega^{(e)} | + | \int_{\Omega^{(e)}} \mathbf{N^T} \rho_S \partial \Omega^{(e)} |
− | = 2 A^{(e)} \left [ \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6}\right ]^T \rho_S | + | = 2 A^{(e)} \left [ \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6}\right ]^T \rho_S |
− | = A^{(e)} \left [ \frac{\rho_S}{3} \quad \frac{\rho_S}{3} \quad \frac{\rho_S}{3}\right ]^T | + | = A^{(e)} \left [ \frac{\rho_S}{3} \quad \frac{\rho_S}{3} \quad \frac{\rho_S}{3}\right ]^T |
</math> | </math> | ||
Revision as of 19:33, 12 November 2009
The 2D Electrostatic Poisson's equation given by the governing PDE and its boundary conditions:
can be written as (see the General formulation for Electrostatic Problems):
with (n is the number of nodes of the element):
2D formulation for Triangular Elements
After applying the numerical integration for triangular elements by using the natural coordinates, we obtain:
Stiffness Matrix K(e)
Source Vector f(e)
- Linear case (np=1 integration point):