2D formulation for Electrostatic Problems
From KratosWiki
(Difference between revisions)
Line 90: | Line 90: | ||
+ | == 2D formulation for Triangular Elements == | ||
+ | === Stiffness Matrix K<sup>(e)</sup> === | ||
+ | |||
+ | ::<math>\int_{\Omega^{(e)}} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} \partial \Omega^{(e)}</math> | ||
+ | |||
+ | ::<math>\oint_{\Gamma_{\infty}^{(e)}} \mathbf{N^T} \alpha \mathbf{N} \partial \Gamma_{\infty}^{(e)}</math> | ||
+ | |||
+ | |||
+ | === Source Vector f<sup>(e)</sup> === | ||
+ | |||
+ | ::<math>\int_{\Omega^{(e)}} \mathbf{N^T} \rho_S \partial \Omega^{(e)}</math> | ||
+ | |||
+ | ::<math>\oint_{\Gamma_q^{(e)}} \mathbf{N^T} \bar D_n \partial \Gamma_q^{(e)}</math> | ||
+ | |||
+ | ::<math>\oint_{\Gamma_V^{(e)}} \mathbf{n^T} \mathbf{N^T} \mathbf{q_n} \partial \Gamma_V^{(e)}</math> | ||
Revision as of 19:09, 11 November 2009
The 2D Electrostatic Poisson's equation given by the governing PDE and its boundary conditions:
can be written as (see the General formulation for Electrostatic Problems):
with (n is the number of nodes of the element):
2D formulation for Triangular Elements
Stiffness Matrix K(e)