2D formulation for Electrostatic Problems
From KratosWiki
(Difference between revisions)
(→Stiffness Matrix K<sup>(e)</sup>) |
(→Stiffness Matrix K<sup>(e)</sup>) |
||
Line 181: | Line 181: | ||
</math> | </math> | ||
::<math> | ::<math> | ||
− | |\mathbf{J^{(e)}}| \sum_{p=1}^{n_p} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} W_p = | + | \qquad = |\mathbf{J^{(e)}}| \sum_{p=1}^{n_p} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} W_p = |
|\mathbf{J^{(e)}}| \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} \sum_{p=1}^{n_p} W_p = | |\mathbf{J^{(e)}}| \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} \sum_{p=1}^{n_p} W_p = | ||
\frac{|\mathbf{J^{(e)}}|}{2} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} | \frac{|\mathbf{J^{(e)}}|}{2} \mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} |
Revision as of 16:33, 12 November 2009
The 2D Electrostatic Poisson's equation given by the governing PDE and its boundary conditions:
can be written as (see the General formulation for Electrostatic Problems):
with (n is the number of nodes of the element):
2D formulation for Triangular Elements
After applying the numerical integration for triangular elements by using the natural coordinates, we obtain: