2D formulation for Electrostatic Problems
From KratosWiki
(Difference between revisions)
m (→2D formulation for Triangular Elements) |
(→2D formulation for Triangular Elements) |
||
Line 213: | Line 213: | ||
</math> | </math> | ||
+ | |||
+ | ::<math> | ||
+ | \mathbf{B}= | ||
+ | = | ||
+ | \frac{1}{2 A^{(e)}}} | ||
+ | \begin{bmatrix} | ||
+ | - y_1 + y_3 & - y_2 + y_1 \\ | ||
+ | - x_3 + x_1 & - x_1 + x_2 | ||
+ | \end{bmatrix} | ||
+ | \begin{bmatrix} | ||
+ | -1 & 1 & 0 \\ | ||
+ | -1 & 0 & 1 | ||
+ | \end{bmatrix} | ||
+ | = | ||
+ | \frac{1}{2 A^{(e)}}} | ||
+ | \begin{bmatrix} | ||
+ | - y_3 + y_2 & - y_1 + y_3 & - y_2 + y_1 \\ | ||
+ | x_3 - x_2 & - x_3 + x_1 & - x_1 + x_2 | ||
+ | \end{bmatrix} | ||
+ | </math> | ||
Revision as of 18:11, 12 November 2009
The 2D Electrostatic Poisson's equation given by the governing PDE and its boundary conditions:
can be written as (see the General formulation for Electrostatic Problems):
with (n is the number of nodes of the element):
2D formulation for Triangular Elements
After applying the numerical integration for triangular elements by using the natural coordinates, we obtain:
- Failed to parse (syntax error): \mathbf{B}= = \frac{1}{2 A^{(e)}}} \begin{bmatrix} - y_1 + y_3 & - y_2 + y_1 \\ - x_3 + x_1 & - x_1 + x_2 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} = \frac{1}{2 A^{(e)}}} \begin{bmatrix} - y_3 + y_2 & - y_1 + y_3 & - y_2 + y_1 \\ x_3 - x_2 & - x_3 + x_1 & - x_1 + x_2 \end{bmatrix}
Stiffness Matrix K(e)