# 2D formulation for Electrostatic Problems

From KratosWiki

(Difference between revisions)

(→Source Vector f<sup>(e)</sup>) |
(→Source Vector f<sup>(e)</sup>) |
||

Line 389: | Line 389: | ||

</math> | </math> | ||

− | |||

− | ::<math>N=\left [ \frac{1}{3} \quad \frac{1}{3} \quad \frac{1}{3}\right ] \qquad W_i=\frac{1}{2}\,</math> | + | ::Linear case ('''n<sub>p</sub>'''=1 integration point): |

+ | |||

+ | |||

+ | :::<math>N=\left [ \frac{1}{3} \quad \frac{1}{3} \quad \frac{1}{3}\right ] \qquad W_i=\frac{1}{2}\,</math> | ||

::<math> | ::<math> |

## Revision as of 19:32, 12 November 2009

The 2D Electrostatic Poisson's equation given by the governing PDE and its boundary conditions:

can be written as (see the General formulation for Electrostatic Problems):

with (* n* is the number of nodes of the element):

## 2D formulation for Triangular Elements

After applying the numerical integration for triangular elements by using the natural coordinates, we obtain:

### Stiffness Matrix K^{(e)}

### Source Vector f^{(e)}

- Linear case (
**n**=1 integration point):_{p}

- Linear case (