2D formulation for Electrostatic Problems
From KratosWiki
(Difference between revisions)
(→Stiffness Matrix K<sup>(e)</sup>) |
(→Source Vector f<sup>(e)</sup>) |
||
Line 390: | Line 390: | ||
− | ::Linear case ('''n<sub>p</sub>'''=1 integration point): | + | ::'''Linear case''' ('''n<sub>p</sub>'''=1 integration point): |
− | :::<math>N=\left [ \frac{1}{3} \quad \frac{1}{3} \quad \frac{1}{3}\right ] \qquad W_i=\frac{1}{2}\,</math> | + | ::::<math>N=\left [ \frac{1}{3} \quad \frac{1}{3} \quad \frac{1}{3}\right ] \qquad W_i=\frac{1}{2}\,</math> |
− | ::<math> | + | ::::<math> |
\int_{\Omega^{(e)}} \mathbf{N^T} \rho_S \partial \Omega^{(e)} = | \int_{\Omega^{(e)}} \mathbf{N^T} \rho_S \partial \Omega^{(e)} = | ||
= 2 A^{(e)} \left [ \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6}\right ]^T \rho_S = | = 2 A^{(e)} \left [ \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6}\right ]^T \rho_S = |
Revision as of 19:33, 12 November 2009
The 2D Electrostatic Poisson's equation given by the governing PDE and its boundary conditions:
can be written as (see the General formulation for Electrostatic Problems):
with (n is the number of nodes of the element):
2D formulation for Triangular Elements
After applying the numerical integration for triangular elements by using the natural coordinates, we obtain:
Stiffness Matrix K(e)
Source Vector f(e)
- Linear case (np=1 integration point):