2D formulation for Electrostatic Problems
From KratosWiki
(Difference between revisions)
(→2D formulation for Triangular Elements) |
(→Stiffness Matrix K<sup>(e)</sup>) |
||
Line 251: | Line 251: | ||
− | ::<math>\mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} = | + | ::::<math>\mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} = |
\begin{bmatrix} | \begin{bmatrix} | ||
\displaystyle \frac{\partial N_1}{\partial x} & | \displaystyle \frac{\partial N_1}{\partial x} & | ||
Line 279: | Line 279: | ||
− | ::<math>\mathbf{B(x,y)^T} \mathbf{\varepsilon} \mathbf{B(x,y)} = | + | ::::<math>\mathbf{B(x,y)^T} \mathbf{\varepsilon} \mathbf{B(x,y)} = |
\mathbf{B(\alpha,\beta)^T} \mathbf{[[J^{(e)}]^{-1}]^T} \mathbf{\varepsilon} \mathbf{[J^{(e)}]^{-1}} \mathbf{B(\alpha,\beta)}</math> | \mathbf{B(\alpha,\beta)^T} \mathbf{[[J^{(e)}]^{-1}]^T} \mathbf{\varepsilon} \mathbf{[J^{(e)}]^{-1}} \mathbf{B(\alpha,\beta)}</math> | ||
− | ::<math>\mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} = | + | ::::<math>\mathbf{B^T} \mathbf{\varepsilon} \mathbf{B} = |
\frac{1}{|\mathbf{J^{(e)}}|^2} | \frac{1}{|\mathbf{J^{(e)}}|^2} | ||
\begin{bmatrix} | \begin{bmatrix} |
Revision as of 18:15, 12 November 2009
The 2D Electrostatic Poisson's equation given by the governing PDE and its boundary conditions:
can be written as (see the General formulation for Electrostatic Problems):
with (n is the number of nodes of the element):
2D formulation for Triangular Elements
After applying the numerical integration for triangular elements by using the natural coordinates, we obtain:
Stiffness Matrix K(e)