2D formulation for Electrostatic Problems
From KratosWiki
(Difference between revisions)
(→Stiffness Matrix K<sup>(e)</sup>) |
(→Source Vector f<sup>(e)</sup>) |
||
Line 395: | Line 395: | ||
=== Source Vector f<sup>(e)</sup> === | === Source Vector f<sup>(e)</sup> === | ||
− | ::<math>\int_{\Omega^{(e)}} \mathbf{N^T} \rho_S \partial \Omega^{(e)}</math> | + | ::<math> |
+ | \int_{\Omega^{(e)}} \mathbf{N^T} \rho_S \partial \Omega^{(e)}</math> = | ||
+ | \int \int_{A^{(e)}} \mathbf{N^T} \rho_S d x d y = | ||
+ | \int_0^1 \int_0^{1-\beta} |\mathbf{J^{(e)}}| \mathbf{N^T} \rho_S d \alpha d \beta = | ||
+ | </math> | ||
+ | |||
+ | ::<math> | ||
+ | = \qquad \qquad |\mathbf{J^{(e)}}| \sum_{p=1}^{n_p} \mathbf{N^T} \rho_S W_p = | ||
+ | |\mathbf{J^{(e)}}| \mathbf{N^T} \rho_S \sum_{p=1}^{n_p} W_p = | ||
+ | \frac{|\mathbf{J^{(e)}}|}{2} \mathbf{N^T} \rho_S | ||
+ | </math> | ||
+ | |||
+ | |||
::<math>\oint_{\Gamma_q^{(e)}} \mathbf{N^T} \bar D_n \partial \Gamma_q^{(e)}</math> | ::<math>\oint_{\Gamma_q^{(e)}} \mathbf{N^T} \bar D_n \partial \Gamma_q^{(e)}</math> |
Revision as of 19:16, 12 November 2009
The 2D Electrostatic Poisson's equation given by the governing PDE and its boundary conditions:
can be written as (see the General formulation for Electrostatic Problems):
with (n is the number of nodes of the element):
2D formulation for Triangular Elements
After applying the numerical integration for triangular elements by using the natural coordinates, we obtain:
Stiffness Matrix K(e)
Source Vector f(e)
=
\int \int_{A^{(e)}} \mathbf{N^T} \rho_S d x d y = \int_0^1 \int_0^{1-\beta} |\mathbf{J^{(e)}}| \mathbf{N^T} \rho_S d \alpha d \beta =
</math>