2D formulation for Magnetostatic Problems
From KratosWiki
(Difference between revisions)
Line 23: | Line 23: | ||
::<math> | ::<math> | ||
{ | { | ||
− | \int_{\Omega} \mathbf{B^T} \mathbf{ | + | \int_{\Omega} \mathbf{B^T} \mathbf{D} \mathbf{B} \mathbf{a} \partial \Omega + |
\oint_{\Gamma_{\infty}} \mathbf{N^T} \alpha \mathbf{N} \mathbf{a} \partial \Gamma_{\infty} = | \oint_{\Gamma_{\infty}} \mathbf{N^T} \alpha \mathbf{N} \mathbf{a} \partial \Gamma_{\infty} = | ||
− | \int_{\Omega} \mathbf{N^T} | + | \int_{\Omega} \mathbf{N^T} J_S \partial \Omega - |
− | \oint_{\Gamma_q} \mathbf{N^T} \bar | + | \oint_{\Gamma_q} \mathbf{N^T} \bar q_n \partial \Gamma_q - |
− | \oint_{\Gamma_V} \mathbf{n^T} \mathbf{N^T} \mathbf{q_n} \partial \ | + | \oint_{\Gamma_V} \mathbf{n^T} \mathbf{N^T} \mathbf{q_n} \partial \Gamma_{\varphi} |
} | } | ||
</math> | </math> | ||
Line 36: | Line 36: | ||
::<math>\mathbf{K}^{(e)}= | ::<math>\mathbf{K}^{(e)}= | ||
− | \int_{\Omega^{(e)}} \mathbf{B^T} \mathbf{ | + | \int_{\Omega^{(e)}} \mathbf{B^T} \mathbf{D} \mathbf{B} \partial \Omega^{(e)} + |
\oint_{\Gamma_{\infty}^{(e)}} \mathbf{N^T} \alpha \mathbf{N} \partial \Gamma_{\infty}^{(e)} | \oint_{\Gamma_{\infty}^{(e)}} \mathbf{N^T} \alpha \mathbf{N} \partial \Gamma_{\infty}^{(e)} | ||
</math> | </math> | ||
Line 42: | Line 42: | ||
::<math>\mathbf{f}^{(e)}= | ::<math>\mathbf{f}^{(e)}= | ||
\int_{\Omega^{(e)}} \mathbf{N^T} \rho_S \partial \Omega^{(e)} - | \int_{\Omega^{(e)}} \mathbf{N^T} \rho_S \partial \Omega^{(e)} - | ||
− | \oint_{\Gamma_q^{(e)}} \mathbf{N^T} \bar | + | \oint_{\Gamma_q^{(e)}} \mathbf{N^T} \bar q_n \partial \Gamma_q^{(e)} - |
− | \oint_{\ | + | \oint_{\Gamma_{{A_z}^{(e)}}} \mathbf{n^T} \mathbf{N^T} \mathbf{q_n} \partial \Gamma_{\varphi^{(e)}} |
</math> | </math> | ||
Revision as of 10:01, 2 February 2010
The 2D Magnetostatic Poisson's equation given by the governing PDE and its boundary conditions:
can be written as (see the General formulation for Magnetostatic Problems):
with (n is the number of nodes of the element):
2D formulation for Triangular Elements
After applying the numerical integration for triangular elements by using the natural coordinates, we obtain:
Stiffness Matrix K(e)
Source Vector f(e)
- Linear case (np=1 integration point):
- Quadratic case (np=3 integration points):