# CSMm 2.2.Elements

(Difference between revisions)
 Revision as of 08:13, 2 October 2013 (view source)← Older edit Revision as of 08:26, 2 October 2013 (view source)Newer edit → Line 2: Line 2: The available elements are: The available elements are: + '''Solid Element'''. Only available if ''Structural Type'' is set to ''Solid'' or ''Generic''. '''Solid Element'''. Only available if ''Structural Type'' is set to ''Solid'' or ''Generic''. + '''Beam Element ''' '''Beam Element ''' + + This element is based on Euler-Bernoulli formulation. The formulation assumes that a cross section plane orthogonal to the axis of undeformed beam will remain plane and also orthogonal to the axis in deformed configuration. This assumption is valid for thin beams where axial strains (due to the axial forces and also bending moments) are dominant. For short (or thick) beams this formulation is not recommended while it can not reproduce the shear strain of the section. The hypothesis involved in formulation are: + + + \begin{align} + u(x,y,z) & = u(x) - y * \frac{dv(x)}{dx} \\ + v(x,y,z) & = v(x) \\ + w(x,y,z) & = 0 + \end{align} + + + Where the $u,v,w$ are the displacements in beams local axis. + + This element in Kratos is designed for small strain and in this range produce accurate results. The element does not accept any constitutive law and cannot be used for non linear materials. + + '''Element info''': + * '''Input file name''': BeamElement3D2N + * '''Constitutive Law''': None + * '''Nonlinearity''': Only linear + * '''Time Schemes''': Backward Euler, Forward Euler + * '''Dofs''': DISPLACEMENT, ROTATION + * '''Properties''': CROSS_AREA,LOCAL_INERTIA, POISSON_RATIO, YOUNG_MODULUS, DENSITY + * '''Elemental Data''': None + + [[Category:SolidMechanicsElements]] + '''Shell Isotropic''' '''Shell Isotropic''' + '''Membrane''' '''Membrane'''

## Revision as of 08:26, 2 October 2013

The available elements are:

Solid Element. Only available if Structural Type is set to Solid or Generic.

Beam Element

This element is based on Euler-Bernoulli formulation. The formulation assumes that a cross section plane orthogonal to the axis of undeformed beam will remain plane and also orthogonal to the axis in deformed configuration. This assumption is valid for thin beams where axial strains (due to the axial forces and also bending moments) are dominant. For short (or thick) beams this formulation is not recommended while it can not reproduce the shear strain of the section. The hypothesis involved in formulation are: \begin{align} u(x,y,z) & = u(x) - y * \frac{dv(x)}{dx} \\ v(x,y,z) & = v(x) \\ w(x,y,z) & = 0 \end{align}


Where the u,v,w are the displacements in beams local axis.

This element in Kratos is designed for small strain and in this range produce accurate results. The element does not accept any constitutive law and cannot be used for non linear materials.

Element info:

• Input file name: BeamElement3D2N
• Constitutive Law: None
• Nonlinearity: Only linear
• Time Schemes: Backward Euler, Forward Euler
• Dofs: DISPLACEMENT, ROTATION
• Properties: CROSS_AREA,LOCAL_INERTIA, POISSON_RATIO, YOUNG_MODULUS, DENSITY
• Elemental Data: None

Shell Isotropic

Membrane