How to construct a linear solver using the "Linear Solver Factory"
Line 4: | Line 4: | ||
which contains the settings needed for the construction of the solver | which contains the settings needed for the construction of the solver | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
Within kratos there exist different classes of linear solvers. | Within kratos there exist different classes of linear solvers. |
Revision as of 13:48, 3 July 2013
The class "LinearSolverFactory" is designed to help in the construction of the Kratos Linear Solvers, and makes an attempt to unify the construction mechanism.
the essential idea is that the "settings" to be used in the construction of a linear solver are defined by constructing a new python class (with arbitrary name) which contains the settings needed for the construction of the solver
Within kratos there exist different classes of linear solvers.
Solvers available in the Kratos Core
A first group of iterative solvers is included within the Kratos core and is always available to the user. These solvers are
BiConjugate gradient stabilized Conjugate gradient GMRES
This solvers can be used with or without a preconditioner, which is also available within the Kratos core. Available options for the preconditioner are
None DiagonalPreconditioner ILU0
in order to construct a "BiConjugate gradient stabilized" together with an ILU0 preconditioner using the factory class one shall write
##here we specify the settings to be used in the construction class custom_settings:
solver_type = "BiConjugate gradient stabilized" scaling = True preconditioner_type = "DiagonalPreconditioner" max_iteration = 500 tolerance = 1e-6
##here we actually construct a new linear solver using the "custom settings" just defined import linear_solver_factory new_linear_solver = linear_solver_factory.ConstructSolver(custom_settings)
Note that specifying "True" at the scaling option implies that the matrix coefficients is normalized prior to the solution step
The Kratos core also includes a simple direct solver named
Skyline LU factorization
such solver is appropriate for the solution of relatively small systems of equations which can be conveniently solved by employing a direct solver technology. Since the solver is direct, tolerance, preconditioner_type and max_iterations make no sense and are not required. a new solver of this type could be constructed as
##here we specify the settings to be used in the construction class other_settings:
solver_type = "Skyline LU factorization" scaling = False
##here we actually construct a new linear solver using the "other settings" just defined import linear_solver_factory new_direct_solver = linear_solver_factory.ConstructSolver(other_settings)
The kratos core also provides more advanced solvers, specialized to the case of mixed formulations. An example of this is the
Mixed UP
solver which implements a SIMPLE-like preconditioner for the monolithic Navier-Stokes equations combined with a GMRES solver. This solver combines different linear solvers to be used for the "U block" and for the "P block" and shall be in some sense optimal in the case of dominating intertia