Incompressible Fluid Application
(→ASGS(Algebraic Sub Grid Scale)) |
(→General Description) |
||
(13 intermediate revisions by 2 users not shown) | |||
Line 5: | Line 5: | ||
|-style="background:#F1FAFF;" | |-style="background:#F1FAFF;" | ||
| [[Image:cylinder_vel.jpg|400px]] | | [[Image:cylinder_vel.jpg|400px]] | ||
− | + | |-style="background:#F1FAFF;" | |
+ | |<videoflash> | ||
+ | <object width="425" height="344"><param name="movie" | ||
+ | value="http://www.youtube.com/v/4iMe9Hhgi_I&hl=es&fs=1"></param><param | ||
+ | name="allowFullScreen" value="true"></param><param name="allowscriptaccess" | ||
+ | value="always"></param><embed | ||
+ | src="http://www.youtube.com/v/4iMe9Hhgi_I&hl=es&fs=1" | ||
+ | type="application/x-shockwave-flash" allowscriptaccess="always" | ||
+ | allowfullscreen="true" width="425" height="344"></embed></object> | ||
+ | </videoflash> | ||
+ | | An offshore platform subjected to waves. Problem solved using edgebased levelset with 3000000 elements | ||
+ | |||
|} | |} | ||
Line 54: | Line 65: | ||
{| class="wikitable" width="100%" style="text-align:left; background:#d0d9dd; border:0px solid #e1eaee; font-size:100%; -moz-border-radius-topleft:0px; -moz-border-radius-bottomleft:0px; padding:0px 0px 0px 0px;" valign="top" | {| class="wikitable" width="100%" style="text-align:left; background:#d0d9dd; border:0px solid #e1eaee; font-size:100%; -moz-border-radius-topleft:0px; -moz-border-radius-bottomleft:0px; padding:0px 0px 0px 0px;" valign="top" | ||
!Element | !Element | ||
+ | !Methodology | ||
+ | !Time Scheme | ||
!Geometry | !Geometry | ||
|-style="background:#F1FAFF;" | |-style="background:#F1FAFF;" | ||
− | | [[ | + | | [[FLUID]] |
+ | | [[Fractional step]] | ||
+ | | Forward/Backward Euler | ||
| 2D,3D Geometries | | 2D,3D Geometries | ||
|-style="background:#F1FAFF;" | |-style="background:#F1FAFF;" | ||
− | | [[ | + | | [[ASGS]] |
+ | | [[Variational multiscale]] | ||
+ | | Generalized <math>\alpha</math> | ||
| 2D,3D Geometries | | 2D,3D Geometries | ||
|-style="background:#F1FAFF;" | |-style="background:#F1FAFF;" | ||
| [[Fluid2DGLS_expl]] | | [[Fluid2DGLS_expl]] | ||
+ | | [[Least square]] | ||
+ | | Runge-Kutta | ||
| 2D,3D Geometries | | 2D,3D Geometries | ||
|} | |} | ||
Line 76: | Line 95: | ||
<math> | <math> | ||
(\rho \partial_{t}\mathbf{u},\mathbf{v})+ \mu(\nabla\mathbf{u},\nabla\mathbf{v})+(\rho\mathbf{a}\cdot\nabla\mathbf{u},\mathbf{v})-(p,\nabla\cdot\mathbf{v})+(q,\nabla\cdot\mathbf{u}) | (\rho \partial_{t}\mathbf{u},\mathbf{v})+ \mu(\nabla\mathbf{u},\nabla\mathbf{v})+(\rho\mathbf{a}\cdot\nabla\mathbf{u},\mathbf{v})-(p,\nabla\cdot\mathbf{v})+(q,\nabla\cdot\mathbf{u}) | ||
+ | </math> | ||
+ | |||
+ | <math> | ||
+(\rho\partial_{t}\mathbf{u}-\mu\Delta\mathbf{u} + \rho\mathbf{a}\cdot\nabla\mathbf{u}+\nabla p,\mu\Delta\mathbf{v} + \rho\mathbf{a}\cdot\nabla\mathbf{v}+\nabla q)_{\tau1,t} | +(\rho\partial_{t}\mathbf{u}-\mu\Delta\mathbf{u} + \rho\mathbf{a}\cdot\nabla\mathbf{u}+\nabla p,\mu\Delta\mathbf{v} + \rho\mathbf{a}\cdot\nabla\mathbf{v}+\nabla q)_{\tau1,t} | ||
− | +(\rho\nabla\cdot\mathbf{u},\nabla\cdot\mathbf{v})_{\tau2}=\langle\mathbf{f},\mathbf{v}\rangle+(\mathbf{f},\mu\Delta\mathbf{v} + \rho\mathbf{a}\cdot\nabla\mathbf{v}+\nabla q))_{\tau1,t} | + | +(\rho\nabla\cdot\mathbf{u},\nabla\cdot\mathbf{v})_{\tau2} |
+ | </math> | ||
+ | |||
+ | <math> | ||
+ | =\langle\mathbf{f},\mathbf{v}\rangle+(\mathbf{f},\mu\Delta\mathbf{v} + \rho\mathbf{a}\cdot\nabla\mathbf{v}+\nabla q))_{\tau1,t} | ||
</math> | </math> | ||
Line 92: | Line 118: | ||
== Programming Documentation == | == Programming Documentation == | ||
+ | |||
+ | [[PureConvectionEdgeBased]] | ||
[[Category: Applications]] | [[Category: Applications]] |
Latest revision as of 12:18, 7 June 2010
Contents |
General Description
![]() | |
An offshore platform subjected to waves. Problem solved using edgebased levelset with 3000000 elements |
Theory
The aim of this application is to solve the well known set of Navier-Stokes equations. The problem suffers from severe locking and/or instability using linear FEM.
Different approaches could be chosen to solve this problem. Fractional step, Subgrid scale stabilization, GLS are among the others.
Some references to these methods are:
1)Stabilized finite element approximation of transient incompressible flows using orthogonal subscales Ramon Codina Computer Methods in Applied Mechanics and Engineering Vol. 191 (2002), 4295-4321
Numerical approach
All numerical details here.
This is a part quite open, depending on the application we are considering.
Every physical problem is solved defining many different ingredients. Try to be quite schematic.
Elements
Element | Methodology | Time Scheme | Geometry |
---|---|---|---|
FLUID | Fractional step | Forward/Backward Euler | 2D,3D Geometries |
ASGS | Variational multiscale | Generalized α | 2D,3D Geometries |
Fluid2DGLS_expl | Least square | Runge-Kutta | 2D,3D Geometries |
Theory
ASGS(Algebraic Sub Grid Scale)
The basic idea of this method is to approximate the effect of the continuous solution which can not be resolved by the finite element mesh on the discrete finite element solution.