Incompressible Fluid Application

From KratosWiki
(Difference between revisions)
Jump to: navigation, search
(Theory)
(Theory)
Line 16: Line 16:
 
<math>
 
<math>
  
\rho\mbox{}\partial_{t}\mathbf{u}-\mu\mbox{}\Delta\mathbf{u} + \rho\mbox{}\mathbf{u}\cdot\nabla\mathbf{u}+\nabla p = \mathbf{f} \qquad \text{in} \Omega,\qquad t\in ]0,T[
+
\rho
 
+
 
</math>
 
</math>
  
Line 26: Line 25:
  
 
Insert here all the references to your papers...
 
Insert here all the references to your papers...
 +
 +
 +
 +
\qquad \qquad \qquad \qquad\quad \:\:\,\nabla\cdot\mathbf{\rho\mbox{}u} = 0 \qquad \text{in} \Omega,\qquad t\in ]0,T[ 
 +
 +
\qquad \qquad \qquad \qquad \qquad\quad\:\,\mathbf{u} = \mathbf{u_{0}}  \qquad \text{in} \Omega,\qquad t=0
 +
 +
\qquad \qquad \qquad \qquad \qquad\quad\:\:\:\,\mathbf{u} = \mathbf{0}  \qquad \text{in} \Gamma,\qquad t\in ]0,T[
  
 
=== Numerical approach ===
 
=== Numerical approach ===

Revision as of 14:01, 11 December 2009

Contents

General Description

Cylinder vel.jpg

ADVERTISMENT STYLE no numerical details!!!


Theory

The aim of this application is to solve the well known set of Navier-Stokes equations. The problem suffers from severe locking and/or instability using linear FEM.

ρ

This application solve the the equations.... Mathematical approach to the problems.

Nothing numerical

Insert here all the references to your papers...


\qquad \qquad \qquad \qquad\quad \:\:\,\nabla\cdot\mathbf{\rho\mbox{}u} = 0 \qquad \text{in} \Omega,\qquad t\in ]0,T[

\qquad \qquad \qquad \qquad \qquad\quad\:\,\mathbf{u} = \mathbf{u_{0}} \qquad \text{in} \Omega,\qquad t=0

\qquad \qquad \qquad \qquad \qquad\quad\:\:\:\,\mathbf{u} = \mathbf{0} \qquad \text{in} \Gamma,\qquad t\in ]0,T[

Numerical approach

All numerical details here.

This is a part quite open, depending on the application we are considering.

Every physical problem is solved defining many different ingredients. Try to be quite schematic.


Theory

Using the Application

Examples

Programming Documentation

Personal tools
Categories