Incompressible Fluid Application

From KratosWiki
(Difference between revisions)
Jump to: navigation, search
Line 17: Line 17:
\partial_{t}\mathbf{u}-\nu\Delta\mathbf{u} + \mathbf{u}\cdot\nabla\mathbf{u}+\nabla p = \mathbf{f}  \quad  \text{in}  \quad \Omega,  ]0,T[
\partial_{t}\mathbf{u}-\nu\Delta\mathbf{u} + \mathbf{u}\cdot\nabla\mathbf{u}+\nabla p = \mathbf{f}  \quad  \text{in}  \quad \Omega,  ]0,T[
\qquad \qquad \qquad \qquad\quad \:\:\,\nabla\cdot\mathbf{\rho\mbox{}u} = 0

Revision as of 14:06, 11 December 2009


General Description

Cylinder vel.jpg

ADVERTISMENT STYLE no numerical details!!!


The aim of this application is to solve the well known set of Navier-Stokes equations. The problem suffers from severe locking and/or instability using linear FEM.

Failed to parse (lexing error): \partial_{t}\mathbf{u}-\nu\Delta\mathbf{u} + \mathbf{u}\cdot\nabla\mathbf{u}+\nabla p = \mathbf{f} \quad \text{in} \quad \Omega, ]0,T[ \qquad \qquad \qquad \qquad\quad \:\:\,\nabla\cdot\mathbf{\rho\mbox{}u} = 0

This application solve the the equations.... Mathematical approach to the problems.

Nothing numerical

Insert here all the references to your papers...

\qquad \qquad \qquad \qquad\quad \:\:\,\nabla\cdot\mathbf{\rho\mbox{}u} = 0 \qquad \text{in} \Omega,\qquad t\in ]0,T[

\qquad \qquad \qquad \qquad \qquad\quad\:\,\mathbf{u} = \mathbf{u_{0}} \qquad \text{in} \Omega,\qquad t=0

\qquad \qquad \qquad \qquad \qquad\quad\:\:\:\,\mathbf{u} = \mathbf{0} \qquad \text{in} \Gamma,\qquad t\in ]0,T[

Numerical approach

All numerical details here.

This is a part quite open, depending on the application we are considering.

Every physical problem is solved defining many different ingredients. Try to be quite schematic.


Using the Application


Programming Documentation

Personal tools