# Incompressible Fluid Application

(Difference between revisions)
 Revision as of 15:01, 11 December 2009 (view source)Kazem (Talk | contribs) (→Numerical approach)← Older edit Revision as of 15:07, 11 December 2009 (view source)Kazem (Talk | contribs) (→elements)Newer edit → Line 54: Line 54: {| class="wikitable" width="100%" style="text-align:left; background:#d0d9dd; border:0px solid #e1eaee; font-size:100%; -moz-border-radius-topleft:0px; -moz-border-radius-bottomleft:0px; padding:0px 0px 0px 0px;" valign="top" {| class="wikitable" width="100%" style="text-align:left; background:#d0d9dd; border:0px solid #e1eaee; font-size:100%; -moz-border-radius-topleft:0px; -moz-border-radius-bottomleft:0px; padding:0px 0px 0px 0px;" valign="top" !Element !Element − !Type !Geometry !Geometry − !Nonlinearity − !Material Type |-style="background:#F1FAFF;" |-style="background:#F1FAFF;" − | [[TotalLagrangian]] + | [[FractionalStep]] − | Solid + | 2D,3D Geometries | 2D,3D Geometries − | Large Displacement − | Isotropic |-style="background:#F1FAFF;" |-style="background:#F1FAFF;" − | [[ShellIsotropic]] + | [[SubgridScale]] − | Shell + | 3D Triangle | 3D Triangle − | Large Displacement − | Isotropic |-style="background:#F1FAFF;" |-style="background:#F1FAFF;" | [[ShellAnisotropic]] | [[ShellAnisotropic]] | Shell | Shell | 3D Triangle | 3D Triangle − | Large Displacement − | Orthotropic − |-style="background:#F1FAFF;" − | [[CrisfieldTrussElement]] − | Truss − | Line − | Large Displacement − | Isotropic − |-style="background:#F1FAFF;" − | [[KinematicLinear]] − | − | − | | | |} |}

## General Description

### Theory

The aim of this application is to solve the well known set of Navier-Stokes equations. The problem suffers from severe locking and/or instability using linear FEM.

$\partial_{t}\mathbf{u}-\nu\Delta\mathbf{u} + \mathbf{u}\cdot\nabla\mathbf{u}+\nabla p = \mathbf{f} \quad \text{in} \quad \Omega, ]0,T[$

$\quad \quad \quad \quad \quad \nabla\cdot\mathbf{u} = 0 \quad \text{in} \quad \Omega, ]0,T[$

$\mathbf{u} = \mathbf{u_{0}} \quad \text{in} \quad \Omega, t=0$

$\mathbf{u} = \mathbf{0} \qquad \text{in} \Gamma, t\in ]0,T[$

Different approaches could be chosen to solve this problem. Fractional step, Subgrid scale stabilization, GLS are among the others.

Some references to these methods are:

Stabilized finite element approximation of transient incompressible flows using orthogonal subscales Ramon Codina Computer Methods in Applied Mechanics and Engineering Vol. 191 (2002), 4295-4321

### Numerical approach

All numerical details here.

This is a part quite open, depending on the application we are considering.

Every physical problem is solved defining many different ingredients. Try to be quite schematic.

#### elements

Element Geometry
FractionalStep 2D,3D Geometries
SubgridScale 3D Triangle
ShellAnisotropic Shell 3D Triangle