Incompressible Fluid Application

From KratosWiki
(Difference between revisions)
Jump to: navigation, search
(ASGS(Algebraic Sub Grid Scale))
(Elements)
Line 54: Line 54:
 
!Element
 
!Element
 
!Methodology
 
!Methodology
 +
!Time Scheme
 
!Geometry
 
!Geometry
 
|-style="background:#F1FAFF;"
 
|-style="background:#F1FAFF;"
 
| [[FLUID]]
 
| [[FLUID]]
 
| [[Fractional step]]
 
| [[Fractional step]]
 +
| Forward Euler
 
| 2D,3D Geometries
 
| 2D,3D Geometries
 
|-style="background:#F1FAFF;"
 
|-style="background:#F1FAFF;"
 
| [[ASGS]]
 
| [[ASGS]]
 
| [[Variational multiscale]]
 
| [[Variational multiscale]]
 +
| Generalized <math>\alpha</math>
 
| 2D,3D Geometries
 
| 2D,3D Geometries
 
|-style="background:#F1FAFF;"
 
|-style="background:#F1FAFF;"
 
| [[Fluid2DGLS_expl]]
 
| [[Fluid2DGLS_expl]]
 +
| Runge-Kutta
 
| [[Least square]]
 
| [[Least square]]
 
| 2D,3D Geometries
 
| 2D,3D Geometries

Revision as of 13:29, 15 December 2009

Contents

General Description

Cylinder vel.jpg


Theory

The aim of this application is to solve the well known set of Navier-Stokes equations. The problem suffers from severe locking and/or instability using linear FEM.



\partial_{t}\mathbf{u}-\nu\Delta\mathbf{u} + \mathbf{u}\cdot\nabla\mathbf{u}+\nabla p = \mathbf{f}  \quad  \text{in}  \quad \Omega,   ]0,T[


\quad \quad \quad \quad \quad \nabla\cdot\mathbf{u} = 0 \quad  \text{in}  \quad \Omega,   ]0,T[


\mathbf{u} = \mathbf{u_{0}} \quad  \text{in}  \quad \Omega,  t=0


\mathbf{u} = \mathbf{0} \qquad \text{in} \Gamma, t\in ]0,T[


Different approaches could be chosen to solve this problem. Fractional step, Subgrid scale stabilization, GLS are among the others.


Some references to these methods are:

1)Stabilized finite element approximation of transient incompressible flows using orthogonal subscales Ramon Codina Computer Methods in Applied Mechanics and Engineering Vol. 191 (2002), 4295-4321

Numerical approach

All numerical details here.

This is a part quite open, depending on the application we are considering.

Every physical problem is solved defining many different ingredients. Try to be quite schematic.

Elements

Element Methodology Time Scheme Geometry
FLUID Fractional step Forward Euler 2D,3D Geometries
ASGS Variational multiscale Generalized α 2D,3D Geometries
Fluid2DGLS_expl Runge-Kutta Least square 2D,3D Geometries

Theory

ASGS(Algebraic Sub Grid Scale)

The basic idea of this method is to approximate the effect of the continuous solution which can not be resolved by the finite element mesh on the discrete finite element solution.


(\rho \partial_{t}\mathbf{u},\mathbf{v})+ \mu(\nabla\mathbf{u},\nabla\mathbf{v})+(\rho\mathbf{a}\cdot\nabla\mathbf{u},\mathbf{v})-(p,\nabla\cdot\mathbf{v})+(q,\nabla\cdot\mathbf{u})


+(\rho\partial_{t}\mathbf{u}-\mu\Delta\mathbf{u} + \rho\mathbf{a}\cdot\nabla\mathbf{u}+\nabla p,\mu\Delta\mathbf{v} + \rho\mathbf{a}\cdot\nabla\mathbf{v}+\nabla q)_{\tau1,t}
+(\rho\nabla\cdot\mathbf{u},\nabla\cdot\mathbf{v})_{\tau2}


=\langle\mathbf{f},\mathbf{v}\rangle+(\mathbf{f},\mu\Delta\mathbf{v} + \rho\mathbf{a}\cdot\nabla\mathbf{v}+\nabla q))_{\tau1,t}

Using the Application

Examples

Programming Documentation

Personal tools
Categories