Numerical Integration
(→Gauss-Legendre Numerical Integration) |
(→Numerical Integration for Isoparametric Triangular Domains) |
||
(30 intermediate revisions by one user not shown) | |||
Line 27: | Line 27: | ||
− | {| border="1" class="wikitable" style="margin:auto; background: | + | {| border="1" cellpadding="5" cellspacing="0" class="wikitable" style="margin:auto; background:white;" |
− | ! Number of points, ''p'' !! Points, ''ξ''<sub>''i'' !! Weights, ''w''<sub>''i''</sub> | + | ! Number of points, ''p'' !! Points, ''±ξ''<sub>''i'' !! Weights, ''w''<sub>''i''</sub> |
|- align="center" | |- align="center" | ||
− | | 1 || 0 || 2 | + | | <math>1\,</math> || <math>0.0 \,</math> || <math>2.0\,</math> |
|- align="center" | |- align="center" | ||
− | | 2 || <math>\pm\sqrt{1/3}</math> || 1 | + | | <math>2\,</math> || <math>\pm\sqrt{1/3}</math> || <math>1.0\,</math> |
|- align="center" | |- align="center" | ||
− | | rowspan="2" | 3 | + | | rowspan="2" | <math>3\,</math> || <math>0.0 \,</math> || <math>\frac{8}{9}</math> |
|- align="center" | |- align="center" | ||
− | | <math>\pm\sqrt{3/5}</math> || < | + | | <math>\pm\sqrt{3/5}</math> || <math>\frac{5}{9}</math> |
|- align="center" | |- align="center" | ||
− | | rowspan="2" | 4 || <math>\pm\sqrt{\Big( 3 - 2\sqrt{6/5} \Big)/7}</math> || <math>\tfrac{18+\sqrt{30}}{36}</math> | + | | rowspan="2" | <math>4\,</math> || <math>\pm\sqrt{\Big( 3 - 2\sqrt{6/5} \Big)/7}</math> || <math>\tfrac{18+\sqrt{30}}{36}</math> |
|- align="center" | |- align="center" | ||
| <math>\pm\sqrt{\Big( 3 + 2\sqrt{6/5} \Big)/7}</math> || <math>\tfrac{18-\sqrt{30}}{36}</math> | | <math>\pm\sqrt{\Big( 3 + 2\sqrt{6/5} \Big)/7}</math> || <math>\tfrac{18-\sqrt{30}}{36}</math> | ||
|- align="center" | |- align="center" | ||
− | | rowspan="3" | 5 | + | | rowspan="3" | <math>5\,</math> || <math>0.0 \,</math> || <math>\frac{128}{225}</math> |
|- align="center" | |- align="center" | ||
| <math>\pm\tfrac13\sqrt{5-2\sqrt{10/7}}</math> || <math>\tfrac{322+13\sqrt{70}}{900}</math> | | <math>\pm\tfrac13\sqrt{5-2\sqrt{10/7}}</math> || <math>\tfrac{322+13\sqrt{70}}{900}</math> | ||
Line 48: | Line 48: | ||
| <math>\pm\tfrac13\sqrt{5+2\sqrt{10/7}}</math> || <math>\tfrac{322-13\sqrt{70}}{900}</math> | | <math>\pm\tfrac13\sqrt{5+2\sqrt{10/7}}</math> || <math>\tfrac{322-13\sqrt{70}}{900}</math> | ||
|} | |} | ||
+ | |||
+ | |||
+ | or, using numerical values: | ||
+ | |||
+ | |||
+ | {| border="1" cellpadding="5" cellspacing="0" class="wikitable" style="margin:auto; background:white;" | ||
+ | ! Number of points, ''p'' !! Points, ''±ξ''<sub>''i'' !! Weights, ''w''<sub>''i''</sub> | ||
+ | |- | ||
+ | | 1 || 0.0 || 2.0 | ||
+ | |- | ||
+ | | 2 || 0.5773502692 || 1.0 | ||
+ | |- | ||
+ | | rowspan="2" | 3 || 0.0 || 0.8888888889 | ||
+ | |- | ||
+ | | 0.774596697 || 0.5555555556 | ||
+ | |- | ||
+ | | rowspan="2" | 4 || 0.3399810436 || 0.6521451549 | ||
+ | |- | ||
+ | | 0.8611363116 || 0.3478548451 | ||
+ | |- | ||
+ | | rowspan="3" | 5 || 0.0 || 0.5688888889 | ||
+ | |- | ||
+ | | 0.5384693101 || 0.4786286705 | ||
+ | |- | ||
+ | | 0.9061798459 || 0.2369268851 | ||
+ | |- | ||
+ | | rowspan="3" | 6 || 0.2386191861 || 0.4679139346 | ||
+ | |- | ||
+ | | 0.6612093865 || 0.3607615730 | ||
+ | |- | ||
+ | | 0.9324695142 || 0.1713244924 | ||
+ | |- | ||
+ | | rowspan="4" | 7 || 0.0 || 0.4179591837 | ||
+ | |- | ||
+ | | 0.4058451514 || 0.3818300505 | ||
+ | |- | ||
+ | | 0.7415311856 || 0.2797053915 | ||
+ | |- | ||
+ | | 0.9491079123 || 0.1294849662 | ||
+ | |- | ||
+ | | rowspan="4" | 8 || 0.1834346425 || 0.3626837834 | ||
+ | |- | ||
+ | | 0.5255324099 || 0.3137066459 | ||
+ | |- | ||
+ | | 0.7966664774 || 0.2223810345 | ||
+ | |- | ||
+ | | 0.9602898565 || 0.1012285636 | ||
+ | |} | ||
+ | |||
+ | |||
+ | === Example of a one dimensional integration === | ||
+ | |||
+ | |||
+ | For the function: <math>f(x)=1+x+x^2+x^3+x^4 \,</math>, the exact integration in [-1,+1] is: | ||
+ | |||
+ | :<math>I=\int_{-1}^{+1} f(x) dx = \left . \left ( x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \frac{x^5}{5} \right ) \right |_{-1}^{+1} = 2 + 2 \frac{1}{3} + 2 \frac{1}{5} = 3.0666</math> | ||
+ | |||
+ | Numerically: | ||
+ | |||
+ | :'''First order Gauss-Legendre Quadrature:''' | ||
+ | |||
+ | ::<math>p=1, x_1=0, W_1=2; \qquad I=W_1 f(x_1)=2</math> | ||
+ | |||
+ | |||
+ | :'''Second order Gauss-Legendre Quadrature:''' | ||
+ | |||
+ | ::<math>p=2 | ||
+ | \begin{cases} | ||
+ | x_1 = - 0.57735, & W_1 = 1 \\ | ||
+ | x_2 = + 0.57735, & W_2 = 1 | ||
+ | \end{cases} \qquad I=W_1 f(x_1) + W_2 f(x_2) = 0.67464 + 2.21424 = 2.8888</math> | ||
+ | |||
+ | |||
+ | :'''Third order Gauss-Legendre Quadrature:''' | ||
+ | |||
+ | ::<math>p=3 | ||
+ | \begin{cases} | ||
+ | x_1 = - 0.77459, & W_1 = 0.5555 \\ | ||
+ | x_2 = - 0.00000, & W_2 = 0.8888 \\ | ||
+ | x_3 = + 0.77459, & W_3 = 0.5555 | ||
+ | \end{cases} | ||
+ | </math> | ||
+ | |||
+ | ::<math>I=W_1 f(x_1) + W_2 f(x_2) + W_3 f(x_3) = 0.7204·0.5555 + 1.0·0.8888 + 3.19931·0.5555 = 3.0666 \,</math> | ||
+ | |||
+ | |||
+ | :That is the exact value, because for any polynomial function of '''p<sup>th</sup>''' order it is enough to use '''p-1''' integration points. | ||
+ | |||
+ | |||
+ | == Two Dimensional Numerical Integration == | ||
+ | |||
+ | By using isoparametric formulation we can use natural coordinates to compute any integration. In addition, we can still use the Gauss-Legendre quadrature. | ||
+ | |||
+ | === Numerical Integration for Isoparametric Triangular Domains === | ||
+ | |||
+ | |||
+ | A general integral expression form for two dimensional domains can be written in terms of the [[Two-dimensional_Shape_Functions#Areal_Coordinates | '''area coordinates''']] and, therefore, computed by using the Gauss quadrature: | ||
+ | |||
+ | |||
+ | ::<math>\int_0^1 \int_0^{1-L_3} f(L_1,L_2,L_3) dL_2 dL_3 = \sum_{p=1}^{n_p} f(L_{1_p},L_{2_p},L_{3_p}) W_p</math> | ||
+ | |||
+ | with: | ||
+ | * <math>n_p \,</math> the number of integration points; | ||
+ | * <math>L_{1_p}, L_{2_p}, L_{3_p} \,</math> the value of the area coordinates; | ||
+ | * <math>W_p \,</math> the weight in the integration point '''''p'''''; | ||
+ | |||
+ | The following table and picture shows the integration points and weights for triangles obtained from the Gaussian quadrature ('''precision''' means the degree of polynomial for exact integration): | ||
+ | |||
+ | |||
+ | {| border="1" cellpadding="5" cellspacing="0" class="wikitable" style="margin:auto; background:white;" | ||
+ | ! Number of points, ''n'' !! ''precision'' !! Points !! '''L<sub>1</sub>''' !! '''L<sub>2</sub>''' !! '''L<sub>3</sub>''' !! ''W''<sub>''i''</sub> | ||
+ | |- align="center" | ||
+ | | 1 || Linear || ''a'' || 1/3 || 1/3 || 1/3 || 1/2 | ||
+ | |- align="center" | ||
+ | | rowspan="3" | 3 || rowspan="3" | Quadratic || ''a'' || 1/2 || 1/2 || 0 || 1/6 | ||
+ | |- align="center" | ||
+ | | ''b'' || 0 || 1/2 || 1/2 || 1/6 | ||
+ | |- align="center" | ||
+ | | ''c'' || 1/2 || 0 || 1/2 || 1/6 | ||
+ | |- align="center" | ||
+ | | rowspan="4" | 4 || rowspan="4" | Cubic || ''a'' || 1/3 || 1/3 || 1/3 || -9/32 | ||
+ | |- align="center" | ||
+ | | ''b'' || 0.6 || 0.2 || 0.2 || 25/96 | ||
+ | |- align="center" | ||
+ | | ''c'' || 0.2 || 0.6 || 0.2 || 25/96 | ||
+ | |- align="center" | ||
+ | | ''d'' || 0.2 || 0.2 || 0.6 || 25/96 | ||
+ | |- align="center" | ||
+ | | rowspan="7" | 7 || rowspan="7" | Quartic || ''a'' || 0 || 0 || 1 || 1/40 | ||
+ | |- align="center" | ||
+ | | ''b'' || 1/2 || 0 || 1/2 || 1/15 | ||
+ | |- align="center" | ||
+ | | ''c'' || 1 || 0 || 0 || 1/40 | ||
+ | |- align="center" | ||
+ | | ''d'' || 1/2 || 1/2 || 0 || 1/15 | ||
+ | |- align="center" | ||
+ | | ''e'' || 0 || 1 || 0 || 1/40 | ||
+ | |- align="center" | ||
+ | | ''f'' || 0 || 1/2 || 1/2 || 1/15 | ||
+ | |- align="center" | ||
+ | | ''g'' || 1/3 || 1/3 || 1/3 || 9/40 | ||
+ | |} | ||
+ | |||
+ | |||
+ | ::[[Image:IntegrationPointsTriangularElement.jpg]] | ||
+ | |||
+ | |||
+ | Note that the weight values has been normalised in order to sum 1/2 to maintain the exact value for the element area. | ||
+ | |||
+ | |||
+ | Therefore: | ||
+ | |||
+ | :<math>A^{(e)} = \int \int_{A^{(e)}} dx dy = \int_0^1 \int_0^{1-\beta} |J^{(e)}| d\alpha d\beta = |J^{(e)}| \sum_p W_p = \frac{|J^{(e)}|}{2}</math> | ||
== References == | == References == |
Latest revision as of 18:41, 11 November 2009
Numerical integration refers to all the procedures, algorithms and techniques in the numerical analysis to obtain an approximate solution to a definite integral.
That is, how to obtain a numerical value of:
where can be a 1D, 2D or 3D domain.
For our interest in the Finite Element Method, the purpose is to describe how the element matrices can be integrated numerically.
Contents |
Gauss-Legendre Numerical Integration
To fix the most basic concepts on Numerical Integration, we will focus our description on a one dimensional integration using the Gauss-Legendre quadrature, that is, to solve:
The Gauss-Legendre quadrature establish that the definite integral of a function can be approximate by using a weighted sum of function values at specified points within the domain of integration. An p-point Gaussian quadrature rule is constructed to yield an exact result for polynomials of degree 2p − 1 or less by a suitable choice of the points and weights
for
.
The coordinates and related weights are:
Number of points, p | Points, ±ξi | Weights, wi |
---|---|---|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() | |
![]() |
![]() |
![]() |
![]() |
![]() | |
![]() |
![]() |
![]() |
![]() |
![]() | |
![]() |
![]() |
or, using numerical values:
Number of points, p | Points, ±ξi | Weights, wi |
---|---|---|
1 | 0.0 | 2.0 |
2 | 0.5773502692 | 1.0 |
3 | 0.0 | 0.8888888889 |
0.774596697 | 0.5555555556 | |
4 | 0.3399810436 | 0.6521451549 |
0.8611363116 | 0.3478548451 | |
5 | 0.0 | 0.5688888889 |
0.5384693101 | 0.4786286705 | |
0.9061798459 | 0.2369268851 | |
6 | 0.2386191861 | 0.4679139346 |
0.6612093865 | 0.3607615730 | |
0.9324695142 | 0.1713244924 | |
7 | 0.0 | 0.4179591837 |
0.4058451514 | 0.3818300505 | |
0.7415311856 | 0.2797053915 | |
0.9491079123 | 0.1294849662 | |
8 | 0.1834346425 | 0.3626837834 |
0.5255324099 | 0.3137066459 | |
0.7966664774 | 0.2223810345 | |
0.9602898565 | 0.1012285636 |
Example of a one dimensional integration
For the function: , the exact integration in [-1,+1] is:
Numerically:
- First order Gauss-Legendre Quadrature:
- Second order Gauss-Legendre Quadrature:
- Third order Gauss-Legendre Quadrature:
- That is the exact value, because for any polynomial function of pth order it is enough to use p-1 integration points.
Two Dimensional Numerical Integration
By using isoparametric formulation we can use natural coordinates to compute any integration. In addition, we can still use the Gauss-Legendre quadrature.
Numerical Integration for Isoparametric Triangular Domains
A general integral expression form for two dimensional domains can be written in terms of the area coordinates and, therefore, computed by using the Gauss quadrature:
with:
-
the number of integration points;
-
the value of the area coordinates;
-
the weight in the integration point p;
The following table and picture shows the integration points and weights for triangles obtained from the Gaussian quadrature (precision means the degree of polynomial for exact integration):
Number of points, n | precision | Points | L1 | L2 | L3 | Wi |
---|---|---|---|---|---|---|
1 | Linear | a | 1/3 | 1/3 | 1/3 | 1/2 |
3 | Quadratic | a | 1/2 | 1/2 | 0 | 1/6 |
b | 0 | 1/2 | 1/2 | 1/6 | ||
c | 1/2 | 0 | 1/2 | 1/6 | ||
4 | Cubic | a | 1/3 | 1/3 | 1/3 | -9/32 |
b | 0.6 | 0.2 | 0.2 | 25/96 | ||
c | 0.2 | 0.6 | 0.2 | 25/96 | ||
d | 0.2 | 0.2 | 0.6 | 25/96 | ||
7 | Quartic | a | 0 | 0 | 1 | 1/40 |
b | 1/2 | 0 | 1/2 | 1/15 | ||
c | 1 | 0 | 0 | 1/40 | ||
d | 1/2 | 1/2 | 0 | 1/15 | ||
e | 0 | 1 | 0 | 1/40 | ||
f | 0 | 1/2 | 1/2 | 1/15 | ||
g | 1/3 | 1/3 | 1/3 | 9/40 |
Note that the weight values has been normalised in order to sum 1/2 to maintain the exact value for the element area.
Therefore:
References
- Carlos A. Felippa, "A compendium of FEM integration formulas for symbolic work", Engineering Computations, Vol. 21 No. 8, 2004, pp. 867-890, (c) Emerald Group Publishing Limited [1]
- Numerical Integration
- Gaussian Quadrature