Solid Mechanics Application Elements

From KratosWiki
(Difference between revisions)
Jump to: navigation, search
(Elements in the Solid Mechanics Application)
Line 1: Line 1:
 
==== Elements in the Solid Mechanics Application ====
 
==== Elements in the Solid Mechanics Application ====
This application implements only volumetric or surface finite elements. This is the 3D solids and the simplified 2D models representing the same volumetric domain.  
+
This application implements only volumetric or surface finite elements. These are the 3D solids and the simplified 2D models representing the volumetric domain.  
  
Most of the common finite elements for solid mechanics are formulated in displacements. The current developments give the displacement-based elememts avaliable in the application and also some hybrid dislacement-pressure based elements. The last ones are useful for the treatment of the material incompressibility.  
+
Most of the common finite elements for solid mechanics are formulated in displacements. The application is currently implementing the displacement-based elememts and also some hybrid dislacement-pressure based elements. The last ones are useful for the treatment of the material incompressibility.
  
 
{| class="wikitable" width="100%" style="text-align:center; background:#d0d9dd; border:0px solid #e1eaee; font-size:100%; -moz-border-radius-topleft:0px; -moz-border-radius-bottomleft:0px; padding:0px 0px 0px 0px;" valign="top"
 
{| class="wikitable" width="100%" style="text-align:center; background:#d0d9dd; border:0px solid #e1eaee; font-size:100%; -moz-border-radius-topleft:0px; -moz-border-radius-bottomleft:0px; padding:0px 0px 0px 0px;" valign="top"

Revision as of 17:51, 21 March 2016

Elements in the Solid Mechanics Application

This application implements only volumetric or surface finite elements. These are the 3D solids and the simplified 2D models representing the volumetric domain.

Most of the common finite elements for solid mechanics are formulated in displacements. The application is currently implementing the displacement-based elememts and also some hybrid dislacement-pressure based elements. The last ones are useful for the treatment of the material incompressibility.

Linear Type SolidElement Material Type Dimension Geometry
Small Displacements LinearSolidElement Elastic, Damage 2D plane state / 3D Triangles, Quadrilaterals
SmallDisplacementElement Tetrahedra, Hexahedra, Prisms
AxisymSmallDisplacementElement Elastic, Damage 2D axi-symmetric Triangles, Quadrilaterals
Large Displacements TotalLagrangianElement Elastic, HyperElastic, Plastic, Damage 2D plane state / 3D Triangles, Quadrilaterals
UpdatedLagrangianElement Tetrahedra, Hexahedra, Prisms
AxisymUpdatedLagrangianElement Elastic, Damage 2D axi-symmetric Triangles, Quadrilaterals

Hybrid Displacement-Pressure UP Elements in the Solid Mechanics Application

Linear Type SolidElement Material Type Dimension Geometry
Large Displacements UpdatedLagrangianUPElement Elastic, HyperElastic, Plastic, Damage 2D plane state / 3D Triangle2D3N
Tetrahedra3D4N
AxisymUpdatedLagrangianUPElement Elastic, HyperElastic, Plastic, Damage 2D axi-symmetric Triangles2D3N
Personal tools
Categories