Solid Mechanics Application Elements
From KratosWiki
(Difference between revisions)
(→Elements in the Solid Mechanics Application) |
|||
Line 1: | Line 1: | ||
==== Elements in the Solid Mechanics Application ==== | ==== Elements in the Solid Mechanics Application ==== | ||
− | This application implements only volumetric or surface finite elements. | + | This application implements only volumetric or surface finite elements. These are the 3D solids and the simplified 2D models representing the volumetric domain. |
− | Most of the common finite elements for solid mechanics are formulated in displacements. The | + | Most of the common finite elements for solid mechanics are formulated in displacements. The application is currently implementing the displacement-based elememts and also some hybrid dislacement-pressure based elements. The last ones are useful for the treatment of the material incompressibility. |
{| class="wikitable" width="100%" style="text-align:center; background:#d0d9dd; border:0px solid #e1eaee; font-size:100%; -moz-border-radius-topleft:0px; -moz-border-radius-bottomleft:0px; padding:0px 0px 0px 0px;" valign="top" | {| class="wikitable" width="100%" style="text-align:center; background:#d0d9dd; border:0px solid #e1eaee; font-size:100%; -moz-border-radius-topleft:0px; -moz-border-radius-bottomleft:0px; padding:0px 0px 0px 0px;" valign="top" |
Revision as of 17:51, 21 March 2016
Elements in the Solid Mechanics Application
This application implements only volumetric or surface finite elements. These are the 3D solids and the simplified 2D models representing the volumetric domain.
Most of the common finite elements for solid mechanics are formulated in displacements. The application is currently implementing the displacement-based elememts and also some hybrid dislacement-pressure based elements. The last ones are useful for the treatment of the material incompressibility.
Linear Type | SolidElement | Material Type | Dimension | Geometry |
---|---|---|---|---|
Small Displacements | LinearSolidElement | Elastic, Damage | 2D plane state / 3D | Triangles, Quadrilaterals |
SmallDisplacementElement | Tetrahedra, Hexahedra, Prisms | |||
AxisymSmallDisplacementElement | Elastic, Damage | 2D axi-symmetric | Triangles, Quadrilaterals | |
Large Displacements | TotalLagrangianElement | Elastic, HyperElastic, Plastic, Damage | 2D plane state / 3D | Triangles, Quadrilaterals |
UpdatedLagrangianElement | Tetrahedra, Hexahedra, Prisms | |||
AxisymUpdatedLagrangianElement | Elastic, Damage | 2D axi-symmetric | Triangles, Quadrilaterals |
Hybrid Displacement-Pressure UP Elements in the Solid Mechanics Application
Linear Type | SolidElement | Material Type | Dimension | Geometry |
---|---|---|---|---|
Large Displacements | UpdatedLagrangianUPElement | Elastic, HyperElastic, Plastic, Damage | 2D plane state / 3D | Triangle2D3N |
Tetrahedra3D4N | ||||
AxisymUpdatedLagrangianUPElement | Elastic, HyperElastic, Plastic, Damage | 2D axi-symmetric | Triangles2D3N |